Machine Learning Interpretability: Explaining Blackbox Models with LIME (Part II)


The idea behind the model-agnostic technique LIME is to approximate a complex model locally by an interpretable model and to use that simple model to explain a prediction of a particular instance of interest.

This is the second part of our series about Machine Learning interpretability. We want to describe LIME (Local Interpretable Model-Agnostic Explanations), a popular t