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A B S T R A C T

Differential privacy is a privacy criterion which mathematically guarantees a level of
individual privacy while still allowing analysts to obtain aggregate information about a
sample. Existing differentially private algorithms often focus on collecting limited and
simple statistics such as counts, sums, or simple histograms. In this thesis, I explore
the potential of analyzing more complex relationships in a differentially private fashion
using randomized sampling and response, an algorithm suitable for use in streaming
which satisfies differential privacy as well as zero knowledge privacy. After presenting
a procedure for the optimization of randomization parameters with respect to result
accuracy, I examine the limits of randomized sampling and response, quantifying the
relationship between sample size, proportions of individual histogram buckets, differ-
ential privacy level, and result accuracy after parameter optimization. I empirically test
these findings by implementing a test system to carry out randomized sampling and
response for both single- and multi-column database queries, introducing the possibility
of examining relationships and event chains in addition to simple frequency counts. My
results represent a refinement in the application of randomized sampling and response
and a demonstration of the potential for wider and more flexible utilization of differential
privacy.

Z U S A M M E N FA S S U N G

Differential Privacy ist ein mathematisches Kriterium, das ein gewisses Schutzniveau für
die Privatsphäre einzelner Betroffener garantiert aber dabei die Erkennung statistischer
Zusammenhänge zulässt. Viele bisherige Algorithmen, die Differential Privacy erfüllen,
setzen darauf, beschränkte und einfache Statistiken wie z.B. Summen, Anzahlen oder
einfache Histogramme zu berechnen. In dieser Arbeit untersuche ich Möglichkeiten, kom-
plexere Verhältnisse unter Erfüllung von Differential Privacy zu analysieren, unter Einsatz
der Technik “Randomized Sampling and Response”, eines für Streaming geeigneten
Algorithmus, der sowohl Differential Privacy als auch Zero Knowledge Privacy erfüllt.
Neben der Entwicklung einer Prozedur, welche die Randomisierungsparameter bezüglich
der resultierenden Genauigkeit der Ergebnisse optimiert, untersuche ich die Grenzen
von Randomized Sampling and Response und quantifiziere das Verhältnis zwischen der
Stichprobengröße, den Anteilen der individuellen Histogrammgruppen, dem Differential-
Privacy-Niveau und der optimierten Genauigkeit der Ergebnisse. Ich überprüfe diese
Aussagen empirisch durch die Implementierung eines Testsystems, das Randomized Sam-
pling and Response zur Evaluierung von Datenbankanfragen mit einer oder mehreren
Antwortspalten anwendet, und stelle damit die Möglichkeit vor, nicht nur die Häu-
figkeit einzelner Ereignisse oder Eigenschaften zu erkennen, sondern auch Ereignisketten
und Verhältnisse zwischen Variablen zu untersuchen. Meine Ergebnisse stellen eine
Verfeinerung sowie eine Erweiterung der Anwendung von Randomized Sampling und
Response dar und demonstrieren das Potenzial für einen weitergehenden und flexibleren
Einsatz von Differential Privacy.
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1
I N T R O D U C T I O N A N D M O T I VAT I O N

In recent years, the volume of data collected digitally about individuals has grown
tremendously. This growth has brought with it the potential to analyze personal and
machine-generated data on a massive scale. “Big Data” analyses are finding use for
diverse purposes ranging from dynamic hotel room pricing [1] to the identification of
disease co-occurrence trends [2]. Big Data and Business Analytics is thus a fast-growing
industry with revenues projected to exceed $210 billion by 2020 [3].

Although the potential benefits of large-scale personal data analysis are great, they have
been saddled with worries relating to the privacy and security of potentially sensitive
personal information contained in these data. Public opinion has grown increasingly
suspicious of the usage of their online personal data for business purposes, with 80% of
social network users indicating concern for the usage of their data by third parties [4].

In addition to its impact on consumer trust and public opinion, the implications
of irresponsibly processing personal data are also legal: The protection of individuals’
privacy is anchored in EU law under Directive 95/46/EC and national laws (soon to
be overhauled when the General Data Protection Regulation enters into force in 2018);
in the United States, assorted regulations such as the Health Insurance Portability and
Accountability Act (HIPAA) and its privacy provisions must be taken into consideration.
Otherwise, individuals and companies analyzing personal data risk punitive fines and
sanctions.

In order to temper the legal risks and issues of trust associated with the processing of
personal data, Big Data analysts often rely on anonymization, which describes methods
which transform data in a way such that it becomes impossible to identify individuals on
their basis [5]. However, guaranteeing that a data-set is truly non-identifiable is a non-
trivial problem, and many intuitive anonymization techniques have proven fallible upon
closer examination (see Section 2.2). As a result, researchers have turned to anonymization
methods which rely on rigorous mathematical guarantees rather than the mere perception
of anonymity.

One such mathematical guarantee is the concept of differential privacy as introduced
by Dwork in 2006. Differential privacy relies on the idea that data are transformed by a
randomizing function before being transmitted to the analyst. This randomizing function
is considered “differentially private” if, simply put, changing the value of any individual
dataset cannot change the value of the output in a predictable way. Since the untrusted
analyst only receives the output of the function, the individual’s privacy is guaranteed
because their individual result cannot noticeably affect the information received by the
analyst. However, in aggregate, the output may be used to estimate useful statistics [6].

Differential Privacy is particularly well-suited for streaming applications, where the
data to be analyzed changes over time. In contrast to other measures of anonymity such
as k-Anonymity and `-Diversity (see Section 2.3), which focus on the one-time “cleaning”
of a static, unchanging database, Differential Privacy is suited to making repeated queries
on a database where entries may be changed, added, or removed over time; this is because

1



2 introduction and motivation

a differentially-private algorithm can be applied to an individual database row before it
is added to the database.

Although a number of differentially-private algorithms and architectures have been
researched, many of these have limitations which constrain their applicability to typical
Big Data applications. For instance, some are limited to the computation of specific
aggregation statistics, lacking the flexibility to be used for the collection of more complex
information, such as the sequence of websites visited during a session. Others require
the presence of a “trusted curator” or “trusted nodes” which have access to the original,
personalized data in its entirety; however, in the case of data analysts who wish to analyze
user browsing histories or clickstreams, such a trusted actor is not likely to exist.

In this thesis, I examine the possibility of expanding the application of the existing
differentially-private algorithm “randomized sampling and response”, proposed and
implemented by Do Le Quoc in 2016 within the framework of his PrivApprox system.
Randomized sampling and response allows for differentially-private, streaming collection
of data in a distributed fashion. A distributed algorithm is advantageous since it relies on
the original personal data only being collected on the individual users’ devices instead
of on a central database. These devices then respond to queries from an analyst with
responses which have already been anonymized; this allows the central aggregator to
calculate the desired statistics, while ensuring that the identifiable personal data never
leave the client device, thus rendering the “trusted curator” unnecessary. In the algorithm
itself (randomized sampling and response), each bit in the subject’s response to a query
has a pre-determined chance of being a random answer rather than an honest one,
and each subject flips a coin to decide whether to answer at all. In addition to being
differentially-private, this method also satisfies zero knowledge privacy, a more strict
privacy notion introduced by Gehrke [7].

So far, the published technical report on PrivApprox only tests the collection of simple
aggregation statistics [8]; in this thesis, I examine how more complex relationships can
be analyzed. Using the Java programming language, I implement a test system which
collects sample data from the Twitter API in conjunction with the wrapper twitter4j and
enables the query of statistics using SQLite, applying the randomized sampling and
response method. I evaluate its ability to flexibly execute multi-column SQLite queries in
a differentially-private manner. In addition, I theoretically and empirically analyze the
amount of error introduced through the randomized response mechanism, and introduce
a procedure to optimize the algorithm’s parameters, minimizing the theoretical variance
for a desired privacy level.

I begin with a more detailed theoretical introduction to the concepts of anonymization
and mathematical notions of anonymity, including differential privacy and zero knowl-
edge privacy. I also introduce the randomized response algorithm and its mathematical
properties. After a review of the existing literature of differentially-private algorithms, I
introduce my technical implementation for the collection, randomization, and analysis of
test data, including new procedures for the optimization of randomization parameters
and the processing of queries including multiple responses. I then test the performance
of my implementation on a set of devised test cases and evaluate these on the basis of
their variance, as related to the level of differential privacy (and zero knowledge privacy)
provided and the theoretically expected variance.



2
B A C K G R O U N D

2.1 anonymization

2.1.1 Definition

Anonymization is the principle method allowing the harvesting of useful statistics
from personal data while eliminating the risk to individual privacy as well as the need to
comply with legal regulations on the handling of personal data. Specificylly, Recital 26 to
the General Data Protection Regulation excepts anonymous data as well as “personal
data rendered anonymous” (i.e. anonymized data) from its stipulations and defines them
as follows:

Definition 2.1.1 (Anonymized data). Personal data rendered anonymous in such a
manner that the data subject is not or no longer identifiable. [5]

Similar definitions of anonymous data may be found in §164.502(d) of HIPAA under
the moniker “de-identification” [9].

In the following sections, well-known methods of anonymization are described and
evaluated.

2.2 naive anonymization and its weaknesses

The most intuitive and simple solution to anonymize personal data is to remove obvious
identifying characteristics such as names, telephone numbers, and addresses. This is the
anonymization method explicitly recommended by §164.514 of HIPAA [9]. However, such
anonymization has proven to be surprisingly unreliable. It is often possible to determine
the identity of individual “anonymous” entries by comparing common attributes in other
public databases. Such a “linking attack” aims to find a set of attributes which reveal
enough information to narrow the identity of an entry to one specific person [10].

Several case studies have been published to demonstrate the inadequacy of simply
removing identifiers. In 1997, Sweeney successfully re-identified anonymized health
records of Governor William Weld of Massachusetts using only his gender, date of
birth, and ZIP code by matching this information to public voting records. Sweeney also
estimated that this combination of information is enough to identify 87 percent of the US
population [11]. In 2013, Sweeney published a further case study showing that 35 of 81

cases in news articles were able to be definitively linked to health records in public state
hospital data, using a combination of gender, age, general address, hospital, and incident
details [11].

Furthermore, in 2006, Ohm succeeded in identifying the users associated with ostensi-
bly anonymized publicized Netflix ratings via linkage with public ratings in the Internet
Movie Database. Although such a privacy breach may seem relatively harmless at first
glance, the authors point out that the ratings of political, religious, or LGBT-themed
media can be used to glean highly sensitive information about the subject [12]. Indeed,
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4 background

this incident led one individual to bring a lawsuit against Netflix in 2009 who claimed
that the release of her viewing history allowed the identification of her sexual orientation
[13].

More recently, as reported in August 2017, journalist Svea Eckert and data scientist
Andreas Dewes were able to obtain a database of clickstreams from a data broker
consisting only of URLs and timestamps from German internet users. They thus obtained
sensitive information such as the adult media viewed by a judge, the medication used by
a German MP, and even details on a German cybercrime investigation [14].

These cases make clear that simply removing immediate identifiers is not sufficient to
ensure the privacy of data subjects.

2.3 mathematical criteria for anonymized datasets

The weaknesses of basic anonymization have led researchers to devise more rigorous
mathematical guarantees of privacy. These include a number of measures such as k-
Anonymity, `-Diversity, t-Closeness, δ-Presence and ε-Differential Privacy [15].

It should be noted that it is impossible to completely prevent information about an
individual from being learned if a statistical analysis is to be useful. For instance, a study
demonstrating that smoking causes cancer will inevitably reveal that any individual
smoker is more likely to become ill with cancer. As a result, any criteria for privacy must
be defined by some numerical constraint which sets “how much” we are allowed to learn
from a given database entry [6]. The following sections introduce some of the devised
mathematical criteria for anonymity.

k-anonymity k-Anonymity was introduced by Samarati and Sweeney in 1998 as a
measure against the linkage attacks described in the previous section. It is defined as
follows [16]:

Definition 2.3.1 (k-Anonymity). A dataset fulfills k-Anonymity if every combination of
values of quasi-identifiers can be indistinctly matched to at least k individuals.

This ensures that no single entry can be identified as belonging to a particular individ-
ual, since any combination of potentially-identifying features are shared by at least k− 1
other entries. This set of k or more entries is said to form an “equivalence class.” This
renders impossible the identification of a particular row belonging to an individual.

Although k-Anonymity eliminates the possibility of de-anonymization of individual
database records, it does not eliminate all risk of deducing compromising information
from a database. Of particular interest is the homogeneity attack: if an attacker knows
that her target, a 45-year-old male from the ZIP code group 123**, is contained in a
public medical database, and finds that all k males in the database sharing these quasi-
identifiers were diagnosed with lung cancer, then she can deduce that the target also
has lung cancer. The same risk can be posed if the entries all have similar diagnoses, an
unusual distribution of diagnoses, or if the attacker possesses additional background
knowledge which allows her to identify which diagnoses could plausibly apply to the
target [17]. `-Diversity and t-Closeness are two criteria devised to address these concerns.

`-diversity `-Diversity aims to prevent such information deductions by ensuring a
degree of variation within each equivalence class. It can be defined as follows[17]:
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Definition 2.3.2 (`-Diversity). A set of entries sharing the same quasi-identifiers (equiva-
lence class) is `-diverse if it contains at least ` “well-represented”1 values for the sensitive
attribute S. A table is `-diverse if every equivalence class in the table is `-diverse.

By ensuring that there is no equivalence class where all members share the same
sensitive piece of information, `-Diversity protects against a homogeneity attack. It also
provides security against a background knowledge attack, dependent on the value of `:
in order to derive the sensitive information of one individual in the equivalence class, an
attacker must eliminate at least `− 1 other possibilities, a task which becomes increasingly
difficult with an increasing ` [17].
`-Diversity remains vulnerable to skewedness attacks: even if an equivalence class is

`-diverse, its distribution of values may still be significantly deviant from the norm such
that sensitive information can still be determined. For instance, if a database shows `
distinct salary ranges under 30,000, then its `-Diversity will not prevent an attacker from
learning that any member of that class has a relatively low salary [18].

t-closeness t-Closeness is a measure to prevent against a skewedness attack. It
stipulates that the value distribution in any equivalence class must be relatively similar
to that of the entire table. Formally [18]:

Definition 2.3.3 (t-Closeness). An equivalence class is said to have t-Closeness if the
distance between the distribution of a sensitive attribute in this class and the distribution
of the attribute in the whole table is no more than a threshold t. A table is said to have
t-Closeness if all equivalence classes have t-Closeness.

With t-Closeness and an appropriate choice of t, a database is adequately protected
against a skewedness attack. Since any grouping of equivalent entries has a similar
distribution of results, one cannot draw any specific conclusions about any member of
an equivalence group using the database.

It must be noted that the above-described criteria of k-Anonymity, `-Diversity, and
t-Closeness (as well as further criteria such as δ-Presence [19]) focus on the “cleaning” of
a static, intact database with full personal details for anonymized release. This introduces
the problem of a “trusted curator,” which is not a part of my problem setting.

In addition, these criteria face difficulty being implemented in a streaming setting
where each incoming data point should be anonymized immediately upon storage. This
is because the properties can only be satisfied with regard to the entire database; a single
arriving data point cannot be rendered k-anonymous or `-diverse in isolation. Although
an example for a proposed streaming algorithm for k-anonymity can be found [20], the
additional implementation of `-Diversity and t-Closeness on a streaming basis could not
be found in the literature.

1 The exact meaning of “well-represented” is flexible and must be determined by the implementor. In essence,
each value contributing to `-diversity must be frequent enough in the equivalence class that it would not be
negligibly improbable from the perspective of an attacker. If, say, 10 distinct sensitive values are present in
the equivalence class, but 9 of the values occupy only 1% of the entries, then it should not be described as
10-diverse, since the infrequent values offer no real protection against a homogeneity attack [17].
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2.4 differential privacy

2.4.1 Definition

ε-Differential Privacy is a privacy criterion proposed by Dwork in 2010 [6] which has
proven itself to be more applicable to streaming and distributed situations.

Intuitively, differential privacy is a requirement that the output of a data analysis
mechanism be relatively independent of the content of any individual data row. Formally,
differential privacy is defined by Dwork as follows [6]:

Definition 2.4.1 (Differential Privacy). A randomized algorithm M with domain N|X|

is ε-differentially private if for all S ⊆ Range(M) and for all x,y ∈ N|X| such that
‖x− y‖1 6 1:

Pr[M(x) ∈ S] 6 exp(ε)Pr[M(y) ∈ S]

In other words, a ε-differentially private algorithm over a data table will not become
much more likely to produce any given result if we change one data item in it. The degree
to which an individual data row is allowed to influence the randomized distribution of
the result is determined by the variable ε.

In its simplest conception, differential privacy consists of a trusted curator who main-
tains a database with private information and a differentially-private mechanism which
allows untrusted analysts to perform statistical evaluations without being able to discern
any individual values. However, as previously discussed, this model is insufficient in
many circumstances.

To address this problem, many newer differential privacy solutions rely on the applica-
tion of the differential privacy mechanism at the client’s device such that the data collector
never learns the “real” data at all [8, 21, 22]. Erlingsson’s differentially-private RAPPOR
algorithm has been implemented for use in Google Chrome [21]. Apple also announced
the implementation of differential privacy in iOS 10 [23]. Although few details on the
specific algorithm can be found publicly, it seems similar to the RAPPOR algorithm used
by Google Chrome [24].

2.5 randomized response

2.5.0.1 Description

One early differentially-private algorithm, which finds application in this thesis, is
randomized response. Randomized response was introduced by Warner in 1965 [25] in
response to the problem that many survey respondents are unwilling to give honest
answers to embarrassing survey questions due to a lack of trust for the interviewer or
simple natural reluctance.

To mitigate this issue, Warner proposed a system in which respondents are given
two contradictory versions of a potentially embarrassing statement, for instance “I have
driven under the influence of alcohol” and “I have never driven under the influence of
alcohol.” Respondents are then asked to flip a coin (or use other randomized means)
to determine which query to respond to. The surveyor does not learn the result of the
coinflip, and thus does not know which question was answered. With knowledge of
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the probability distribution of the randomization 1 (and under the assumption that all
respondents followed the procedure faithfully), it is then possible for the researcher to
estimate the true proportions of individuals who have driven under the influence, but it
cannot be proven that any particular individual has admitted to it; each respondent has
plausible deniability since it is not known which query was answered [25].

An alternative model described by Dwork [6] and utilized in PrivApprox (see Section
3) [8] relies on a two-step procedure which can be defined as follows:

Definition 2.5.1 (Randomized Response). The randomized response algorithm M takes
as a truthful answer as an input, and outputs an answer according to the following
procedure:

1. Flip a coin. If heads, respond truthfully. If tails, go to Step 2.

2. Flip a coin. If heads, respond “yes.” If tails, respond “no.”

p and q define the probabilities of receiving heads in the first and second step respectively.

2.5.0.2 Differential Privacy Characteristics of Randomized Sampling and Response

Randomized response as defined above is differentially private. Using Definition 2.6.1,
let us observe the answer of a single respondent. Let the domain and range be described
as {0, 1}, where 0 indicates “False” and 1 indicates “True”; the domain indicates the truth,
while the range indicates the result of following the randomized response procedure.

Since our domain and range only consists of two entries each, we only need to prove
the following:

Pr[M(1) = 1] 6 exp(ε)Pr[M(0) = 1] (2.1)

Pr[M(0) = 1] 6 exp(ε)Pr[M(1) = 1] (2.2)

Pr[M(1) = 0] 6 exp(ε)Pr[M(0) = 0] (2.3)

Pr[M(0) = 0] 6 exp(ε)Pr[M(1) = 0] (2.4)

We can calculate the respective probabilities as follows:

Pr[M(1) = 1] = Pr[Answer = "Yes"|Truth = "Yes"] =p+ (1− p)q

Pr[M(0) = 1] = Pr[Answer = "Yes"|Truth = "No"] =(1− p)q

Pr[M(1) = 0] = Pr[Answer = "No"|Truth = "Yes"] =(1− p)(1− q)

Pr[M(0) = 0] = Pr[Answer = "No"|Truth = "No"] =p+ (1− p)(1− q)

From these values, it is apparent (and intuitive) that Pr[M(0) = 1] 6 Pr[M(1) = 1] and
Pr[M(1) = 0] 6 Pr[M(0) = 0]. Thus, equations (2.2) and (2.3) above are fulfilled for ε = 0.

For equation (2.1):

ε > ln
(

Pr[M(1) = 1]

Pr[M(0) = 1]

)
> ln

(
p+ (1− p)q

(1− p)q

)
For equation (2.4):

ε > ln
(

Pr[M(0) = 0]

Pr[M(1) = 0]

)
> ln

(
p+ (1− p)(1− q)

(1− p)(1− q)

)
1 For mathematical reasons, the randomization in Warner’s original method may not be a “fair” coin flip with

a 50% probability of each result.
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Thus, the two-step randomized response algorithm is ε-differentially private, where
[8] :

εRR = max
(

ln
(
p+ (1− p)q

(1− p)q

)
, ln
(
p+ (1− p)(1− q)

(1− p)(1− q)

))
εRR = ln

(
max

(
p+ (1− p)q

(1− p)q
,
p+ (1− p)(1− q)

(1− p)(1− q)

))
(2.5)

This can be further generalized to an algorithm M ′ which applies the algorithm M

to each element in a set of “yes”/“no” responses X, outputting a set of randomized
“yes”/“no” responses B. Because each randomization is independent of the others, this
composition is also differentially private, since:

Pr[M(xi) = bi] 6 exp(ε)Pr[M(xi) 6= bi]

⇔Pr[M(xi) = bi] ·
n∏

j=1
j6=i

Pr[M(xj) = bj] 6 exp(ε)Pr[M(xi) 6= bi] ·
n∏

j=1
j6=i

Pr[M(xj) = bj]

⇔Pr[M ′(X) = B] 6 exp(ε)Pr[M ′(X) = B ′]

where B ′ indicates an output which differs in only one element from B.
The differential privacy of the algorithm can also be augmented using random-

sampling: Any given ε-differentially private algorithm becomes ε ′-differentially private
when sampling with a sampling rate s is introduced, where [26]:

ε ′ = ln (1+ (s (exp (ε) − 1)))

It follows that randomized response combined with random sampling yields a differ-
ential privacy factor of:

ε ′RR = ln
(
1+

(
s

(
max

(
p+ (1− p)q

(1− p)q
,
p+ (1− p)(1− q)

(1− p)(1− q)

)
− 1

)))
(2.6)

2.5.0.3 Result Estimation

After receiving a set of randomized responses, the analyst must be able to estimate the
true underlying statistic r, the proportion of respondents with honest “true” answers.

Let Yr indicate the number of positive responses in the output. Additionally, let N ′

be the total number of responses after the application of randomized sampling. The
expected number of positive responses will consist of approximately p · r ·N ′ honest
“yes” responses as well as approximately (1−p) ·q ·N ′ randomized “yes” responses. The
resulting equation can then be solved for r in order to receive an estimate r̂ for the true
proportion:

Y ≈ p · r ·N ′ + (1− p) · q ·N ′

⇔ r̂ =
Y − (1− p) · q ·N ′

p ·N ′
(2.7)
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2.5.0.4 Accuracy of Result Estimation

In the following, in order to characterize the accuracy (also called “utility”) of the
estimated result of randomized response, I estimate the standard deviation of the estimate
of r.
p, r, and q are constants. N ′ is a randomized variable which can be characterized by

the binomial distribution, since each respondent constitutes one trial with the probability
s of responding. If N is the total number of potential respondents, then N ′ has a variance
of Ns(1− s) and a standard deviation of

√
Ns(1− s). This can be divided by the expected

value of N ′, sN, to obtain the relative standard deviation,
√

Ns(1−s)

Ns =
√

1−s
Ns . Since the

relative variance becomes very small for a large N and a normal (not too small) value of
s, I will regard N ′ as a constant for the following analysis.

Assuming N ′ is constant, Y may be regarded as the sole randomized variable deter-
mining r. Y follows the binomial distribution, since one can consider each sample as a
randomized trial with the probability p · r+ (1− p) · q of delivering the response “Yes.”
Thus, the variance of Y is N ′(p · r+ (1− p) · q)(1− (p · r+ (1− p) · q)).

The variance of equation (2.7) can thus be calculated as [27]:

V(r̂) =
N ′(p · r+ (1− p) · q)(1− (p · r+ (1− p) · q))

p2 ·N ′2

V(r̂) =
(p · r+ (1− p) · q)(1− (p · r+ (1− p) · q))

p2 ·N ′

V(r̂) ≈ (p · r+ (1− p) · q)(1− (p · r+ (1− p) · q))
p2 · s ·N

(2.8)

Although the absolute standard deviation
√
V(r̂) increases as the accurate proportion r

increases, the coefficient of variation
√

V(r̂)

r decreases. Since utility is generally evaluated
as accurate−estimated

accurate , the coefficient of variation, i.e. the ratio of standard deviation to
the accurate value, is more appropriate as a measure of utility and will be utilized as
such during the evaluation portion.

2.5.1 Vulnerability in Repeated Queries

One weakness of differential privacy is that it degrades if the same query is submitted
multiple times. Intuitively, this is clear: If, say, a subject answers the same question many
times in a row using randomized response, then the true answer will become increasingly
predictable with each answer (by taking the average of all estimates).

Mathematically, the execution of two differentially-private mechanisms on the same
database can be expressed as the composition of the two mechanisms M1 and M2 into a
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single mechanism M12(x) = (M1(x), (M2(x)). Then, for inputs x and y with ‖x− y‖1 6 1
we have [6]:

Pr[M12(x) = (r1, r2)] 6 exp(ε12) · Pr[M12(y) = (r1, r2)]

⇔ Pr[M1(x) = r1] · Pr[M2(x) = r2] 6 exp(ε12) · Pr[M1(y) = r1] · Pr[M2(y) = r2]

⇔ exp(ε12) >
Pr[M1(x) = r1] · Pr[M2(x) = r2]

Pr[M1(y) = r1] · Pr[M2(y) = r2]

⇔ exp(ε12) > exp(ε1) · exp(ε2)

⇔ exp(ε12) > exp(ε1 + ε2)

⇔ ε12 > ε1 + ε2 (2.9)

This can be extended to conclude that ε composes additively for multiple differentially-
private queries with the same input. As a result, repeated queries over the same data
must be avoided for the differential privacy factor to remain acceptable.

2.6 zero-knowledge privacy

Zero-knowledge privacy is a notion of privacy introduced by Gehrke [7] in 2011. Zero-
knowledge privacy is meant to offer an additional layer of privacy where differential
privacy may not be effective, particularly in cases where information about other persons
associated with an individual may already compromise that individual’s privacy. This is
of particular interest in social networks; aggregate characteristics about the friends of an
individual can be used to detect that individual’s characteristics with high accuracy. For
instance, if a differentially-private mechanism is used to determine that a clique in an
American social network mostly consists of Republicans, then it can be guessed that any
individual in that clique is a Republican with high probability, even if the individual did
not volunteer this information [7].

Zero-knowledge privacy offers a solution to this issue by allowing the information
released by a mechanism to be compared to a specific set of information considered
“acceptable”. Formally, let OutA(A(z)↔M(D)) denote the output received by an analyst
A after interacting with a randomized algorithm M over the database D. Furthermore,
define agg as a class of randomized algorithms providing aggregate information. Within
this framework, zero-knowledge privacy is defined as follows:

Definition 2.6.1 (Zero Knowledge Privacy). M is ε-zero-knowledge private with respect
to agg if there exists a T ∈ agg such that for every adversary A, there exists a simulator
S such that for every database D, every z ∈ {0, 1}∗ , every integer i ∈ [n], and every
W ⊆ {0, 1}∗ , the following hold:

Pr[OutA(A(z)↔M(D)) ∈W] 6 exp(ε) · Pr[S(z, T(D−i), i,n) ∈W]

exp(ε) · Pr[S(z, T(D−i), i,n) ∈W] 6 Pr[OutA(A(z)↔M(D)) ∈W]

where D−i represents the database D with i-th dataset concealed.

Instead of comparing the result of M to the result of M without a given entry (differen-
tial privacy), zero-knowledge privacy compares the result of M to the information which
can be derived from the information provided by agg, which the designer must define in
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order to characterize what information is considered acceptable. Like differential privacy,
zero knowledge privacy composes additively when queries are repeated.

Since any zero knowledge private algorithm (regardless of agg) can be shown to also
be 2ε-differentially private [7], differential privacy can be regarded as a special case of
zero knowledge privacy.

The original paper by Gehrke focuses on the definition of agg as RS(k(n)), defined as
algorithms which have access to a random sample of k(n) database rows, where k(n) is
a function of the sample size n. In the trivial case where agg = RS(n), i.e. the simulator
has access to all database rows (except i), any ε-differentially-private algorithm is also
ε-zero knowledge private with respect to RS(n) [7].

Returning to the previous example of cliques consisting of Republicans and Democrats,
it can be shown that a differentially-private algorithm delivering the dominating political
preferences of all cliques cannot be zero knowledge private with respect to RS(k(n))
where k(n) ∈ o(n): If n is sufficiently large, then a simulator with access to o(n) samples
will not have any information at all about many cliques, making it impossible to calculate
statistics for all of them [7].

One simple solution to provide zero knowledge privacy is applying a random sam-
pling step (each answer has probability s of being selected) before the application
of a differentially-private mechanism. This leads to a zero knowledge privacy factor
εZK = ln

(
s
(
2−s
1−s

)
exp(ε) + (1− s)

)
with respect to agg = iidRS(p), the class of algo-

rithms performing operations on data after a randomized sampling step with probability
s of being selected [28].

In the case of randomized sampling and response as presented in 2.5, the zero-
knowledge privacy achieved with respect to agg = iidRS(s) can be calculated on the
basis of εRR as calculated in Equation 2.5, which represents the differential privacy factor
achieved without sampling. Applying the relationship from the previous paragraph, we
have:

ε ′ZP,RR = ln
(
s

(
2− s

1− s

)
exp(εRR) + (1− s)

)
ε ′ZP,RR = ln

(
s

(
2− s

1− s

)(
max

(
p+ (1− p)q

(1− p)q
,
p+ (1− p)(1− q)

(1− p)(1− q)

)
+ (1− s)

))
(2.10)
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R E L AT E D W O R K

A handful of techniques have been developed for differentially-private streaming
analysis.

Dwork began examining “differential privacy under continual observation” in 2010

with a proof-of-concept implementing a differentially-private counter [29]. Other methods
for differential privacy in streaming have similarly focused on specific statistics; a method
proposed by Chan is only capable of calculating the sums of responses [30]. For examining
more complex queries about user behavior, these methods are impractical.

RAPPOR, proposed by Erlingsson in 2014, is an algorithm used in Google Chrome
to collect user browsing data in a differentially-private manner [21]. It also relies on a
distributed privacy model in which user’s responses are anonymized before transmission,
utilizing randomized response in combination with the hashing of response values using
a Bloom filter; the resulting bit strings can then be statistically analyzed to determine the
most common reported values. This method is limited to only identifying results with a
frequency of greater than around 1%, as any less-frequent results are indistinguishable
from statistical noise.

Many of the algorithms which can calculate more complex statistics rely on the
presence of trusted nodes, such as the differentially-private mining of frequent graph
patterns proposed by Shen [31]. Using a Markov Chain Monte Carlo sampling-based
algorithm in combination with the exponential mechanism (a generalized differential
privacy method described by Dwork [6]), Shen proposed an algorithm to determine the
most frequent subgraphs in a graph dataset. While this application is highly interesting
for user behavior analysis, and was indeed tested using a simulated clickstream dataset,
it relies on the presence of a trusted curator with access to the full original dataset. As
discussed in the introduction, this assumption is unacceptable for many contexts.

The same issue exists with a more flexible system proposed by Friedman, capable
of calculating arbitrary statistics. The system bases on the use of nodes which notify
the data aggregator when the data collected there reach certain “threshold” values.
Laplace perturbations are used at 3 steps in the process to ensure that individual entries
cannot (with certainty) trigger or not trigger the crossing of a threshold [32]; however,
the existence of nodes with access to the original, identifiable data is essential to the
concept. SplitX, a system similar to the PrivApprox system discussed below, relies
similarly on trusted nodes which mix randomized responses in with accurate responses
by data subjects [22]. Another algorithm proposed by Chan also relies on trusted nodes
identifying heavy-hitters from accurate data to be transmitted to an untrusted aggregator
[33].

The PrivApprox application proposed and implemented by Le Quoc in 2016 uses
randomized sampling and response at the client side combined, while hiding information
about the source of answers using source rewriting at a series of nodes. Nodes are
prevented from associating randomized answers with individual users using a system of
One-Time-Pad encryption in which the encrypted values and associated keys are sent
separately [8].
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Table 3.1: Summary of reviewed differential privacy streaming methods

Paper Method Test Data Form of Result Limitations

Do Le Quoc et al. [8] Random sampling and ran-
domized response at client,
source rewriting and proxies for
anonymity

Taxi trip distances,
electricity usage

Answers to SQLite
queries in histogram
form

Relies on trusted proxies for un-
linkability of responses. Possi-
bly vulnerable to longitudinal
attacks if respondents are few.

Erlingsson et al. [21] Bloom filter and 2 randomized-
response steps at client

Generated normal
distribution, Win-
dows process names,
and Chrome home-
page names

Estimation of appear-
ance rate of heavy-
hitters

Complex statistical methods
needed to deduce results, only
heavy hitters can be identified.
Only designed for 1 response
per user

Chan et al, 2/2012

[30]
Encryption + perturbation on
client side, such that reconstruc-
tion of sum is possible on analyst
side

(No practical imple-
mentation)

Sum statistics Only calculates sum statistics

Chan et al, 7/2012

[33]
Misra-Gries algorithm used at
trusted nodes, heavy-hitters trans-
mitted to untrusted aggregator

Netflix contest data
set, evaluated mov-
ing average of movie
ratings

Estimation of appear-
ance rate of heavy-
hitters

Requires trusted nodes; only
identifies heavy hitters

Friedman et al [32] Trusted nodes notify coordinator
when statistics reach a certain
threshold defined by “safe zones”;
differential privacy via Laplace
randomization at three steps

Categorization of e-
mails/news articles
based on counts of
keywords

Calculation of arbi-
trary statistics

Requires synchronization,
trusted nodes which calculate
statistics from raw data

Chen et al. [22] Additional random answers shuf-
fled among real answers by prox-
ies

Browser history ana-
lyzed for most vis-
ited websites, numer-
ical browsing activity
statistics

Answers to SQLite
queries in histogram
form

Requires synchronization,
trusted nodes

PrivApprox relies on the distributed storage of raw data on client devices, eliminating
the need for a trusted curator and allowing the data to be anonymized before storage
on the data collector’s servers. The user never sends their data to the analyst; only an
answer to an SQLite query, randomized using the randomized response process (see
Section 2.5) on each bit of the response. Additional privacy guarantees are ensured by
randomly sampling only a portion of the potential respondents, which both improves the
factor ε and allows the algorithm to satisfy “zero-knowledge privacy”, a stricter privacy
standard introduced by Gehrke [7].

The reviewed techniques are summarized in Table 3.1 above.
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D E S I G N

In order to implement a differentially private system for analyzing more complex user
behavior patterns, I use the randomized sampling and response procedure introduced by
Le Quoc in his technical report on PrivApprox.

In the PrivApprox system, SQLite queries are sent to client devices along with a set of
histogram buckets. First, the client devices flip a coin to determine whether to respond at
all. If a device responds, it calculates the desired statistic and converts this into a bitstring
which indicates the bucket that the answer falls into. Then, it calculates a new bitstring
using randomized response for each bit (see 2.5).

This query/answer procedure is advantageous because it is flexible - it can collect
any statistic which is capable of being formulated as an SQL query and organized into
buckets. This can be accomplished using numerical queries as well as string queries
(using regular expressions as buckets, e.g. *.google.com, *.yahoo.com, ...).

In addition, the idea behind randomized sampling and response is relatively easy to
explain to laymen compared to more complex mathematical methods. This poses an
advantage of acceptance and trust, since users can better understand how their data are
anonymized [8].

The published experiments using PrivApprox are thus far limited to simple analyses,
where clients are asked for an answer consisting of a single numerical value. My thesis
focuses on investigating its potential use for analyzing user behavior in a more nuanced
way; for instance, analyzing the frequency of selected event chains rather than the
frequency of single events.

To do so, I have implemented a system which simulates queries and responses using
randomized sampling and response, while expanding its capabilities to process answers
which consist of multiple columns. By extending queries beyond single statistics, it
becomes possible to analyze relationships between related data and discover correlations
between events.

As test data, I use collections of tweets stored using the Twitter Developer APIs [34]. In
order to simulate the distributed set-up of PrivApprox, I select a sample of highly-active
users, each of whom symbolizes a client device which processes a query and delivers a
randomized answer. Using a series of queries, I provide examples of new analyses and
analyze the accuracy of the results, the effect of parameter choices, and the limitations on
collecting accurate statistics using these methods.
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I M P L E M E N TAT I O N

5.1 frameworks used

The entire implementation of my test system was coded in Java 8 with the help of several
frameworks detailed below.

5.1.1 SQLite

In order to store and query the analyzed data, I utilize the relational database manage-
ment system SQLite. SQLite is a self-contained, embedded database management system,
meaning that the database is stored as a normal file in the directory rather than requiring
a separate server as in a traditional database management system [35]. Java contains
binding functions to SQLite, allowing the database to be easily accessed and changed by
the program.

SQLite is used both in the data collection process (to store tweet data) as well as the
randomized response process (to execute queries and deliver raw responses which are
subsequently randomized and analyzed).

5.1.2 Twitter Developer APIs

For the collection of Twitter data, I utilize the Streaming and REST APIs of the Twitter
Developer kit. The Streaming APIs are used to access newly-arriving data in real-time,
while the REST APIs are used to search and query historical tweets [34].

In my implementation, the REST APIs are used in order to search generally for tweets
using textual queries and to query the “timelines” (history of tweets) for individual
users. These methods are limited by time (6-9 days in the past) and number (up to 3200

tweets) respectively [36]. The Streaming API is used to actively collect new tweets as
they are submitted [37]. Both APIs function by accepting textual queries and delivering
JSON responses with JSON objects symbolizing users, tweets, and hashtags, among other
things.

In order to use the APIs in my Java programs, I use twitter4j, an unofficial Java library
which wraps the Twitter API for use in Java [38]. twitter4j configures queries and results
as Java objects, simplifying the query design and result processing.

5.2 collection of test data

In order to ensure an adequately large data volume and equivalent conditions across
tests, a static database was used to test the utility of various queries.

Preliminary experiments, along with the theoretical calculations in Section 2.5.0.4
showed that useful results are associated mainly with two database-dependent factors:
a high sample number, and, with respect to each individual bucket, a sufficiently large
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proportion of “yes” answers. With the very large amount of data available on Twitter, a
large sample number is easy to ensure.

However, ensuring that the buckets will have an adequately large proportion of “yes”
answers is not as trivial, especially for string queries. Any non-trivial string term, even if
relatively popular, will appear in only a very small proportion of all tweets, resulting in a
proportion r which is too small to yield a useful result after randomized response.

To mitigate this problem and allow the useful testing of string queries, I collected
a sample of users who could be expected to have similar content. Specifically, users
tweeting in support of the American President Donald Trump were identified using the
Search API [39] to find all tweets with the hashtag “#MakeAmericaGreatAgain” from the
last 6 to 9 days. The users who sent these tweets were then compiled into a list.

This sample group is appropriate since it is large, highly active, and prone to the
spread of “viral” hashtags and discussion topics, satisfying the need for a large sample
size and the presence of strings which will have a relatively high appearance rate.

After the identification of 10,596 distinct users who had tweeted the hashtag “#MakeAm-
ericaGreatAgain”, their histories were collected using the Timeline API [40] to collect
their most recent 200 tweets.

The resulting 2,062,801 tweets were parsed and stored in two SQLite tables: “tweets”,
and “hashtags” (containing the 932,194 hashtags associated with the tweet collection).

In order to facilitate queries which consider sequential events, the additional columns
“prev” and “next” were added to the table “tweets”, identifying the tweets coming before
and after each individual tweet.

5.3 anonymization

As in the PrivApprox system proposed by Le Quoc [8], my implemented system requires
the analyst to set an SQL query, a set of buckets, and the randomization parameters: prob-
abilities s, p, and q, respectively indicating the sampling probability, the probability of
giving an honest answer, and the probability of answering “yes” in case of a randomized
answer.

Figure 5.1: A miniature-scale example of the implemented randomized response process. The
analyst sends a query and buckets to a set of 3 subjects each convert these to ran-
domized response bitsets, which are then aggregated into a histogram by the analyst.
Arrows marked with “H” or “T” represent coinflips resulting in “heads” or “tails”
respectively.
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The randomization algorithm is run on the SQLite database file after data collection.
To convert the query into the final randomized result, Java 8 Streams are used, converting
the query into a stream of answers, a stream of bitsets indicating bucket membership,
and a stream of randomized bitsets after the application of randomized response. This
stream is then collected into a histogram for analysis. This process is described more
specifically in the following paragraphs and visually depicted in Figure 5.1.

Depending on the query, a user will submit one or more answers (rows): for instance,
the query “SELECT length(content) FROM tweets” will yield one row for each tweet
by the user in the database, while the query “SELECT AVG(length(content)) FROM
tweets” will only return one answer for each user. For each answer, a coin is flipped with
probability s to determine whether to respond at all.

These answers are then compared to the provided bucket values and converted into a
bitset (realized as a Boolean array) which communicates the bucket to which the answer
belongs. This “accurate bitset” is then converted into a “randomized bitset”: for each bit,
a coin is flipped with probability p that the bit remains honest. If the bit is not to remain
honest, a second coin is flipped, with probability q that the bit reads “true”, otherwise
“false”.

The stream of randomized bitsets is then collected into a histogram by summing the
appearances of “true” bits for each position in the bitset. Afterward, the formula in
Section 2.5.0.4 is applied to determine the estimated percentage of responses in each
bucket.

For comparison purposes, my test implementation includes the accurate results along
with the randomized results (wrapped in the class Results); however, a real-life imple-
mentation would of course remove this information from processing.

For evaluation purposes, the results (including accurate counts, randomized counts,
accurate percentages, and percentages estimated from randomized counts) are then
written to a CSV file for analysis.

5.3.1 Multi-Column Responses

In order to allow the algorithm to handle multi-column queries, it is necessary to expand
this basic function. The inputs by the user remain fundamentally the same; however, it
becomes possible to specify queries which return multiple columns, requiring buckets to
be specified for each column.

In order to retain the bitset structure of the responses, it becomes necessary to combine
the multiple bucket sets into one bucket set, of which each bucket representing one
possible combination of buckets from the original multiple sets. Thus, the buckets {a,b, c}
and {d, e} results in an operational bucket set {{a,d}, {a, e}, {b,d}, {b, e}, {c,d}, {c, e}}; the
operational bucket set can be seen as a Cartesian product of the individual bucket sets.

Answers with n columns are then converted into a corresponding bitset by determining
the bucket to which each column of the answer belongs, and then assigning the combina-
tion of these buckets to the composite bucket representing that specific combination of n
buckets.

To do so, I first calculate a “sub-index” xi for each column, indicating which bucket the
individual column belongs to with regard to its individual bucketset. Then, if n indicates
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the number of columns and bi indicates the number of buckets in the i-th column, the
overall index of the bit which needs to be set to "1" can be calculated as:

n∑
i=0

(xi ·
n−1∏
j=i+1

bi)

For instance, with buckets {a,b, c} and {d, e} combining to {{a,d}, {a, e}, {b,d}, {b, e}, {c,d}, {c, e}},
observe the index for an answer belonging to {b, e}. We have x0 = 1, x1 = 1, and b1 = 2,
resulting in (1 ∗ 2) + (1) = 3, correctly assigning the positive bit to the third position (with
0-indexing).

After the calculation of the bitsets, the randomization process continues normally as
described in the previous section.

5.4 evaluation metrics

The two evaluation metrics used to evaluate the results are the differential privacy factor,
as well as the coefficient of variation.

The differential privacy factor is calculated using the following formula (see Section
2.5.0.2, Equation 2.6):

ε ′RR = ln
(
1+

(
s

(
max

(
p+ (1− p)q

(1− p)q
,
p+ (1− p)(1− q)

(1− p)(1− q)

)
− 1

)))
where p is the probability of responding honestly, q is the probability of responding with
“yes” in case of a random answer, and s is the probability of responding at all.

The utility is evaluated using the relative standard deviation, or coefficient of variation

CV =

√
V(r̂)

r . The value V(r̂) can be theoretically calculated as (see Section 2.5.0.4,
Equation 2.8):

V(r̂) =
(p · r+ (1− p) · q)(1− (p · r+ (1− p) · q))

p2 · s ·N

In addition, I estimate V(r̂) empirically for each query by running 100 trials and
calculating the unbiased sample variance:

V(r̂) =
1

N− 1

n∑
i=1

(ri − r̄)
2

where ri is the proportion calculated in each trial, and r̄ is the average proportion
calculated across all trials.

Since the value r̂ is calculated individually for each histogram bucket, the relative
standard deviation is also calculated for each bucket in trials.

5.5 parameter selection

For a given query with N responses (before the application of randomized sampling),
the CV in the calculated statistic for a response with a positive response proportion r, as
well as the differential privacy level, can be calculated using the formulae referenced in
the previous section.
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Since we have three adjustable parameters s, p, and q, it makes sense to identify
optimal combinations of these parameters; specifically, for a desired differential privacy
level ε ′RR, it should be determined which combination of s, p, and q yields the lowest
variance while satisfying the condition of ε ′RR-differential privacy.

However, as the coefficient of variance CV is also dependent on the positive answer
proportion r, CV cannot be uniformly determined for all individual response categories,
which each will have a differing value for r. As a result, I set a different goal: Choose a
value of s, p, and q which allows the lowest-possible positive answer proportion r to be
detected with a coefficient of variation CVmax which is determined to be acceptable.

To do so, I apply the following iterative procedure:

1. Set the desired differential privacy factor ε ′RR,desired.

2. Set the desired maximum CVmax.

3. Set rmin = 1.

4. For every possible combination of s, p, and q (testing values between 0.01 and 1

with an increment of 0.01):

• Calculate ε ′RR.

• If ε ′RR 6 ε ′RR,desired: Calculate CV for every possible r, starting at 1 and
decrementing by 0.001, until CV > CVmax. Once the threshhold CVmax is
exceeded, store the last value of r with CV 6 CVmax.

• If r is smaller than rmin, then rmin := r and store the current combination of
s, p, and q as sopt, qopt, and popt.

5. Return rmin, sopt, qopt, and popt.
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6.1 selection of optimal parameters

Figure 6.1: Relationship between the desired differential privacy factor ε and the optimal ran-
domization and sampling parameters, along with the minimum answer proportions
necessary to achieve a tolerated relative standard deviation a) 6 5% and b) 6 10%, for
a sample size of 2 million. c) and d) depict the zero knowledge privacy factor εZP

achieved using optimized parameters with a tolerated standard deviation of 5% and
10% respectively.

Using the procedure described in Section 5.5, I calculated the optimal values of
parameters s, p, and q for a range of desired differential privacy factors ε, along with
the corresponding lowest positive answer proportions r yielding a coefficient of variance
6 5% and 6 10% (corresponding to relative 95% confidence intervals of ±9.8% and
±19.6% respectively) given a sample size of 2,000,000.

Figure 6.1 shows the resulting optimal parameters s, p, and q for each differential
privacy level ε, along with the resulting minimum proportion to receive results with
the tolerated level of error. As expected, the proportion of positive answers required for
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an acceptably accurate answer decreases as ε increases and the corresponding level of
privacy decreases. Increasing the error tolerance allows for less-frequent buckets to be
accepted. For instance, for ε = 1, groups as small as 1.2% may be collected with a 5%
tolerated error, while groups as small as 0.6% may be collected with 10% tolerated error.

I additionally examined the relationship between sample size and accuracy by fixing
fixed differential privacy factor ε to 0.7 (approximately the value obtained by setting
s, p, and q each to 0.5) and repeating the parameter selection procedure for a range of
sample sizes from 103 to 106. Table 6.1 shows the degree to which an increased sample
size can allow the accurate measurement of small groups; with a sample size of 100,000

and a tolerated coefficient of variation of 5%, we can only accurately measure groups
with a frequency of at least 7.88%. Increasing the sample 10-fold to 1 million reduces this
requirement to 2.29%; further increasing it to 10 million allows just 0.70% to be measured
accurately. (Tolerating a coefficient of variation of 10% reduces the necessary frequency
by approximately half in these cases.) This shows that it is essential to have a sufficiently
large sample size if the analyst wishes to analyze data in a highly granular fashion.

In addition, I calculated the zero knowledge privacy factor εZP achieved (using the
parameters optimized with regard to differential privacy). Regardless of the tolerated
standard deviation which is selected, εZP increases roughly linearly from about 0.8 when
ε = 0.1 to about 2.7 when ε = 2.0.

I also used these results to analyze the benefit achieved from parameter optimization:
For the smallest acceptable group frequencies for each sample size (with a coefficient
of variation of 5%), I calculated the coefficient of variation which would be observed
using a naive parameter selection where p, s, q = 0.5 (also yielding ε ≈ 0.7). The results
are depicted in Figure 6.2, which shows that groups with a CV of 5% using optimized
parameter selection have a CV up to 5.6% using this case of naive selection. The gain in
accuracy from parameter selection is therefore modest; however, it nonetheless has an
advantage as a systematic approach for a parameter selection which is an improvement
above more arbitrary methods.

6.2 string query evaluation

To test the function of the randomized response algorithm on a simple query of one
string value, I queried the text content of all hashtags in the database (SELECT content
FROM hashtags) and assigned these into buckets indicating the 20 most popular hashtagsy
among the user sample. For the first trial, ε ′RR was set to 0.7, and the parameters s, p, and
q were set to their optimal values of 0.05, 0.88, and 0.37 respectively for a tolerated error
of 10% (resulting in zero knowledge privacy ε ′ZP,RR = 1.41). For the second trial, ε ′RR was
set to 2.0, with s, p, and q being set to 0.08, 0.94, and 0.2 (resulting in zero knowledge
privacy ε ′ZP,RR = 2.72).

In order to empirically assess the accuracy of the randomized response procedure, I
repeated the query 100 times and calculated the empirical variance in the differentially-
private result for each bucket.

The results of the first trial with ε ′RR = 0.7 are summarized in Figure 6.3, charts a) and
b). Chart a) demonstrates that more frequent results can be estimated with relatively
high reliability; however, less-frequent results are more prone to significant error as a
result of randomization.
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Sample
size

Proportion
with

< 5% CV

Proportion
with

< 10% CV

1x103 83.27% 44.50%

5x103 39.79% 18.90%

1x104 27.39% 12.86%

5x104 11.37% 5.37%

1x105 7.88% 3.69%

5x105 3.30% 1.60%

1x106 2.29% 1.10%

5x106 0.99% 0.50%

1x107 0.70% 0.39%

Table 6.1: Sample sizes and the resulting
smallest-possible proportions with ac-
ceptable error after parameter opti-
mization.

Figure 6.2: Coefficient of variation observed for
naive parameter selection (all param-
eters set to 0.5) vs. optimized param-
eter selection achieving the same pri-
vacy level for various sample sizes,
where the examined group has a pro-
portion corresponding to a CV of 5%
under optimized conditions.

Chart b) depicts the relationship between the frequency of buckets and utility more
clearly. The empirically-observed variation between queries coincides well with the
theoretically expected variation calculated using Equation 2.8. The utility of each result
increases (i.e. its coefficient of variation decreases) as its frequency increases; results
above 1% show more acceptable coefficients of variation 6 10% (correspoding to a 95%
confidence interval of 6 ±19.8%), while less-frequent results decrease quickly in utility,
showing coefficients of variance up to 24% (with 95% confidence interval ±94.1%).

The second trial, depicted in charts c) and d), shows a considerably higher accuracy;
here, almost all results showed relatively low variability, with a coefficient of variation
6 10%. However, this comes at a cost to the privacy level: The differential privacy factor
of 2.0 indicates that any given response may become up to e2 ≈ 7.4 times more likely
as a result of changing one answer (refer to Definition 2.6.1). While this preserves the
fundamental differential privacy characteristic that a given answer cannot be deduced
with certainty, an attacker may nonetheless be able to deduce a probable answer.

6.3 multi-column query evaluation

To demonstrate the ability of my system to evaluate queries with multiple columns per
response, I queried the length (number of characters) of a given tweet along with the
length of the following tweet, using the following query: SELECT length(a.content), length
(b.content) FROM tweets AS a JOIN tweets AS b ON a.next = b.id. For each column, the 5

buckets [0-50], (50-90], (90-110], (110-130] and (130, 140] were assigned. This results in
52 = 25 composite buckets, each indicating a value range for both columns. The optimal
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Figure 6.3: a, c) The frequency yielded by one randomized response trial compared to the true
frequency for each response bucket. Error bars indicate the 95% confidence interval
based on the theoretical standard deviation. b, d) The empirically-observed coefficient
of variation for each bucket, compared to the theoretically expected coefficient of
variation, in relationship to the true frequency of each bucket. Graphs a) and b)
resulted from a trial with ε = 0.7; graphs c) and d) from a trial with ε = 2.0.
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Figure 6.4: The raw results from a multi-column query. Each bucket represents a combination of
two value ranges for the length of one tweet and the length of the following tweet. One
sample result after randomized sampling and response is compared to the accurate
result. The error bars indicate the 95% confidence interval based on the theoretical
standard deviation.

parameters for ε ′RR = 0.7, a tolerated error of 5%, and the response number of 2,052,205

were set to s = 0.07, p = 0.87, and q = 0.47 (resulting in ε ′RR,ZP = 1.42).
The results are presented in Figure 6.4 in a form similar to Figure 6.3. Here, each bucket

represents a specific combination of two value ranges for the “current” and “next” tweet.
This graph represents the raw results delivered by the algorithm; however, the depiction
is not as useful for interpreting the results in a meaningful way. An analyst would likely
not be interested in the frequency of each sequence, but rather in a question such as, “If
a user submits a tweet with length x, how likely is it that the next tweet has length y?”

To better answer this question, I calculated the distribution of lengths in the second
tweets of each pair, given that the first tweet falls into a specified value range. This
transformation was performed for each individual trial, so that the empirical variance
in the end result could be calculated. The results are summarized in Figure 6.5. Here, it
can be seen that meaningful results were obtained; for instance, one can deduce that a
second tweet with 130 to 140 characters becomes more likely as the length of the first
tweet increases. Similarly, a second tweet with less than 50 characters becomes less likely
as the length of the first tweet increases.

Figure 6.6 shows that a standard deviation of 10% was not exceeded for any bucket
before or after transformation, and that the transformation had no great effect on the
variation observed in the buckets.
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Figure 6.5: The distribution of lengths for a subsequent tweet after a given length for the first
tweet. Error bars indicate the 95% confidence interval on the basis of the theoretical
standard deviation.

Figure 6.6: The coefficients of variation observed in a multiple-column query, before and after
transformation into subgroups, compared to the theoretically-calculated coefficient of
variation (before transformation). The transformation performed does not appear to
affect the coefficient of variation heavily.



7
C O N C L U S I O N A N D F U T U R E W O R K

7.1 summary

In the course of my thesis, I expanded the existing anonymization technique of ran-
domized sampling and response to be able to process more complex queries consisting
of multiple variables. I also derived a theoretical framework to determine the variance
introduced by the application of randomized response and determine the limitations the
technique.

I characterized the feasibility of anonymization as a function of the size of the surveyed
sample, the proportions of the target groups, and the desired differential privacy factor
ε, and showed that the most accurate results can be obtained by using an iterative
technique to determine an optimal combination of the randomization parameters s, p,
and q, allowing these parameters to be set objectively rather than arbitrarily (as has
generally been done in previous work involving randomized response).

These findings expand the applicability of differential privacy and zero-knowledge
privacy in stream processing: Using this technique, it is possible to examine more complex
questions relating to sequence of events or correlations between variables. The operator
of a website or a smartphone application can use this technique to answer questions
such as: How often does a user who clicks on a given advertisement proceed to purchase
a product? Which pages are more popular among users of various age groups? Using
examples based on publicly-available Twitter data, I showed that results can be obtained
in this fashion which are sufficiently accurate and differentially private.

The analysis also revealed certain limitations of this technique. Perhaps the most
notable limitation is the fact that the variance of the received answer grows as the total
sample size becomes smaller, or as the queried groups become smaller in proportion to
the survey group. This fact can make it impossible to derive useful results in situations
where the sample size and/or the target group are too small (unless the quality of
the differential privacy is sacrificed). However, I took steps to mitigate this problem
by establishing a theoretical framework with which analysts can estimate the expected
accuracy of their results for given target group proportions, as well as a procedure to
minimize variability by optimizing the randomization parameters for a desired privacy
level.

7.2 future work

Randomized sampling and response may only be used to check the frequency of buckets
set by the analyst; it cannot be used to proactively “discover” groups which are not listed
in the buckets of the query (beyond the ability to identify the proportion of respondents
not belonging to any of the given buckets). However, all differentially-private algorithms
which could be found that allow the analysis of arbitrary data types (such as strings)
require this input from the analyst [22, 21, 8]. The discovery of such algorithms may be a
subject of future work.

29



30 conclusion and future work

Since the differential privacy factor increases additively as a query is repeated multiple
times 2.5.1 (and the average results of repeated queries will eventually converge to an
accurate result), a real-life implementation of this system would need measures to ensure
that the analyst cannot simply repeat a query an arbitrary number of times to circumvent
anonymization. In future implementations, it would be plausible to solve this issue using
“permanent randomized response”, a technique used by Erlingsson in the RAPPOR
system by which user devices remember their answers to previous queries and deliver
the same randomized response if the query is repeated [21].

A topic of differential privacy which has generally been unsatisfactorily discussed in
differential privacy literature is the choice of ε. Beyond an abstract understanding of the
value of ε (e.g. ε = 0.7 indicates that a given true value cannot increase the probability of
a given response by a factor greater than 2), little attention is paid in most literature to
how this translates to an appropriate choice of ε in the real world. Lee [41] developed
a model for determining an acceptable ε on the basis of the underlying distribution
of results, and Hsu [42] developed a model based on comparing the economic costs of
accuracy to the costs of potential privacy breaches. Future work may focus on applying
these or similar models to randomized sampling and response to form a more rigorous
process in the selection of ε.
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