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Abstract

Machine learning models are omnipresent for predictions on data streams. One

challenge of deployed models is the change of data over time – a phenomenon called

concept drift. If not considered in the entire process, from model design to deploy-

ment, a concept drift can lead to significant mispredictions. In this thesis the effects

of concept drift in regression tasks are explored. A novel approach for concept drift

handling is introduced, which depicts a strategy to switch between the application

of simple and complex machine learning models. The approach leverages the in-

dividual strengths of each model, switching to the simpler model if a sudden drift

occurs and switching back to the complex model for typical situations. To evaluate

the approach, it is instantiated on a real-world dataset of taxi demand in New York

City. This dataset is prone to multiple drifts, e.g. the weather phenomena of bliz-

zards, resulting in a sudden decrease of taxi demand, or festival taking place, which

results in unusually high demand. The analysis of the approach over a time span

of six years shows that the suggested approach outperforms all regarded baselines

significantly.
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1 Introduction

In the last decade the amount of data available to businesses has continued to

grow and reaping the benefits of this resource has become a necessity in all indus-

tries. Machine Learning (ML) is playing an important role in this context, helping

to transform and (semi-)automate established business processes – spanning from

marketing to operations (Chen et al., 2012). Typical applications of ML range from

computer vision over speech recognition to natural language processing or the con-

trol of manufacturing robots. Thereby, these techniques are especially influencing

data-intensive tasks such as consumer services or the analysis and handling of faults

in complex production systems (Jordan and Mitchell, 2015).

ML can create ongoing value when the resulting models are deployed in the in-

formation systems of the respective company and deliver ongoing recommendations

and optimized decisions on continuous data streams (Dunning and Friedman, 2017).

However, data streams usually change over time and thus, their underlying proba-

bility distribution or their data structure changes (Wang and Abraham, 2015). For

example, many data streams describing human behaviour are bound to shift over

time, as influencing factors like trends and preferences change (Žliobaitė et al., 2016).

The challenge of changing data streams for supervised ML tasks has been described

with the term concept drift (Widmer and Kubat, 1996). Most research on concept

drift has been focused on classification tasks, and the minority of published papers

considers regression tasks (Cavalcante et al., 2016; Baier et al., 2019). Additionally,

most of the work on concept drift uses artificial datasets to evaluate new approaches

or is focused only on a small subset of publicly available datasets, like the Australian

Electricity Market or the Airplane dataset (Gama et al., 2014). While this allows

for objective comparisons, the emphasis on simulated problems means that many

real-world challenges are ignored. “Real“ data is noisy, contains errors, and it is

often unclear what to look for (L’Heureux et al., 2017). Therefore, this work focuses

on the application of concept drift strategies for regression tasks on an unexplored

real-world dataset which leads to the first research question of this work:

RQ1: How can we address concept drift in regression problems

in a real-world context?
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For answering this question the application domain of demand forecasts is considered

using the publicly available dataset of every taxi trip performed in New York City

since 2009 (TLC, 2019). By predicting the number of taxis needed in certain regions

of the city at a specific time, the waiting times can be reduced, increasing efficiency

and customer satisfaction. With increasing competition in the mobility market

(e.g. Uber, Lyft, Lime), being able to anticipate demand may be a decisive factor

(Zhao et al., 2016). Given the long time span covered by the dataset and the

many hidden variables that can influence taxi demand, different types of drift can

be observed, which indicates its suitability for the task at hand. The first part of

this research will focus on detecting and describing drifting concepts and evaluating

existing approaches on this regression task.

An initial analysis of several predictive models shows that during certain short peri-

ods a simple baseline model was significantly more accurate than more sophisticated

approaches. In their proposal for a machine learning model management architec-

ture, called “Rendezvous-Architecture“, Dunning and Friedman (2017) include a

so-called “Canary Model“. Named after the canary bird used by miners to detect

harmful gases, this model is used to “detect shifts in the input data and as a com-

parison benchmark for other models“ (Dunning and Friedman, 2017, p.38). Inspired

by this approach of leveraging an older or simpler model, a second research question

emerged:

RQ2: How can we leverage models with different degrees of complexity

to make the prediction more robust?

In answering this question a new approach is proposed – named error intersection

approach (EIA), which utilizes static prediction models which are alternated based

on the development of the error curve. Static models have the advantage that they

need to be implemented only once and can also be verified and tested extensively

before they are deployed in production for ongoing predictions. This approach is

evaluated against detectors for sudden drift, both on its accuracy overall, as well as

the behaviour during specific time frames.

The thesis is organized as follows: Chapter 2 analyzes the current state of relevant

research in the areas of concept drift, time series prediction and traffic demand
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prediction. Chapter 3 describes the design and implementation of predictors and

drift detectors that are used to answer the research questions. Chapter 4 evaluates

the accuracy of these predictors and detectors over a time span of six years. Finally,

a conclusion is drawn in Chapter 5 on the implications of this work and areas of

future research are outlined.
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2 Theoretical Foundations

In this chapter the most important concepts and definitions for the thesis are dis-

cussed. The aim is to build towards an understanding of the problem domain, the

current state of research and its most recent developments.

2.1 Time Series Forecasting

Time series forecasting, or time series prediction, is used to make predictions over

many dynamic processes, such as stock price movements, monthly sales numbers or

temperature changes in a city (Cavalcante et al., 2016). While the research area

of time series analysis and forecasting is still continuously evolving, this thesis will

focus on equidistant time series:

Definition 1: Equidistant Time Series: A time series is a sequence of ob-

servations, the order of which is based on time. Every value yt of a time series

Y = (yt)t∈T = (y0, y1, . . . , yT ) is assigned a point in time t ∈ {0, . . . , T}. The series

is equidistant, if the distance between consecutive points in time is constant.

Figure 1 shows a well-known equidistant time series of monthly totals of interna-

tional airline passengers from 1949 to 1960, from Box et al. (1970). It will be used

throughout this chapter as an example to visualize the presented concepts.

1949 1951 1953 1955 1957 1959 1961

200

400

600
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n
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rs

Figure 1: Plot of the airline passengers dataset

Time series forecasting can then be defined as the task of extrapolating future real-

isations of a given time series over a prediction window. Given the fact, that a time
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series is time-dependent, a näıve approach is to simply assume the next value ŷ (or

values) to be equal to the last known one:

ŷT+1 = yT (2.1)

This basic idea is commonly extended to include known, simple trends, such as

inflation. Though not very sophisticated (and not good in its prediction), this model

is commonly used as a baseline, to help evaluate more complex models (Hyndman

and Athanasopoulos, 2013).

The näıve approach is based on the assumption, that a time series is autocorrelated.

Autocorrelation is the correlation between observations of a certain distance. The

autocorrelation coefficient rk is defined as:

rk =

∑T
t=k+1 (yt − y) (yt−k − y)∑T

t=1 (yt − y)2
(2.2)

where ȳ is the mean of all observations. Calculating the coefficient for many lags k

yields a correlation plot as shown in Figure 2 for the airline passenger dataset. Each

point represents a autocorrelation coefficient rk. A point that falls outside the blue

band is statistically significantly different from 0 with α = 0.05. The overall shape

of this particular plot can be considered typical for seasonal data with a trend. The

seasonality causes the up-and-down; the trend causes the coefficient to decrease with

larger lags (Hyndman and Athanasopoulos, 2013).

Another important concept of time series forecasting is stationarity. A time series

is stationary, if the value of the time series does not depend on time:

Definition 2: (Weakly) Stationary time series: A time series (yt)t∈T is called

(weakly) stationary if

i) the expected value is constant, i.e. E (yt) = µ for all t ∈ T

ii) the variance is finite, i.e. Var (yt) <∞ for all t ∈ T, and

iii) the autocovariance is stable against shifts, i.e. Cov (yt1 , yt2) = Cov (ys+t1 , ys+t2)

for all s, t1, t2 ∈ T

When analyzing a stationary time series, properties can be found that do not only

apply to certain observations, but instead are invariant to time. Transforming a
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time series into a stationary one is often a first step, since many models assume a

stationary series. One example, the ARIMA model, will be explained in more detail

in Section 2.1.3.
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Figure 2: Autocorrelation plot of the airline passengers dataset

2.1.1 Classical Decomposition

For most economic use-cases it can be assumed that the observation follows an

overall trend as well as some seasonality, or regularly recurring pattern. This can

be modelled as a set of overlaying components (Brockwell and Davis, 2002):

• Trend component Tt: shows the long-term trend

• Seasonal component St: commonly has a wave shape and describes recur-

ring developments

• Random noise component ut: is the result of irregularly changing other

influences and often described as white noise, with a mean of zero and constant

variance.

Based on these components the family of decomposition models was developed.

Decomposition by itself is only a framework, describing how to separate the series

into its components. However, functions and assumptions of each component can be
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chosen freely. There are two different types of time series decomposition - additive

(often called linear) and multiplicative (often called nonlinear):

yt = Tt + St + ut additive model

yt = Tt × St × ut multiplicative model
(2.3)

In order to estimate the components the first step is to fit a trend curve (linear,

polynomial, etc) and remove it from the data by either subtracting (additive model)

or dividing (multiplicative). The resulting series approximates St + ut, which again

is approximated to determine the seasonal component. Finally, after removing both

the trend and seasonal component, ideally only the random noise remains. Testing

if the remainder is in fact random, is a good indicator, that most of the information

of the series is extracted (Hyndman and Athanasopoulos, 2013). Figure 3 shows an

example for a multiplicative decomposition on the airline passenger dataset from

Box et al. (1970).
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Figure 3: Time series decomposition with statsmodels
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2.1.2 Exponential Smoothing

Later in the 1950s and 60s, Brown (Brown, 1959), Holt (Holt, 1957) and Win-

ters (Winters, 1960) developed the method of exponential smoothing for time series

forecasting. Predictions based on these methods are weighted averages of previ-

ous observations, where the corresponding weight decreases exponentially with the

observations age.

ŷT+1 = αyT + α(1− α)yT−1 + α(1− α)2yT−2 + . . . (2.4)

The simplest form of exponential smoothing, simple exponential smoothing (SES),

is suited for time series without trend or seasonality. In component form it can be

written as

Forecast Equation ŷt+1 = `t

Smoothing Equation `t = αyt + (1− α)`t−1
(2.5)

(Hyndman and Athanasopoulos, 2013). To make predictions, the parameters for

smoothing factor (α) and initial value (`0) need to be chosen, usually by minimizing

the squared error using an optimiziation algorithm, since it is a non-linear mini-

mization problem.

Subsequently, exponential smoothing was expanded by Holt (1957) and Winters

(1960) to what is now known as the “Holt-Winters seasonal method“. The method

consists of one forecasting equation and three smoothing equations, one each for

the level `0, the trend bt, and the seasonal component st, with their respective

smoothing factors α, β and γ. Here, the letter m is used to denote the frequency

of the seasonality, e.g. 12 for a yearly seasonality in a monthly time series. In the

additive method, which is used when the seasonal variation is constant over time,

the seasonal component is expressed in absolute terms and subtracted in the leveling

equation in order to seasonally adjust the data.

Forecast Equation ŷt+1 = `t + bt + st+1−m

Level Equation `t = α (yt − st−m) + (1− α) (`t−1 + bt−1)

Trend Equation bt = β∗ (`t − `t−1) + (1− β∗) bt−1
Seasonal Equation st = γ (yt − `t−1 − bt−1) + (1− γ)st−m

(2.6)
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2.1.3 Autoregressive Integrated Moving Average Models

Autoregressive integrated moving average models (ARIMA) aim to describe auto-

correlations of the data, rather than trend and seasonality (Hyndman and Athana-

sopoulos, 2013). Popularized by Box et al. (1970), ARIMA models have since been

extended and adapted considerably in many areas of science (De Gooijer and Hyn-

dman, 2006). Generating an ARIMA-model usually consists of three steps:

1. Obtaining a stationary series (differencing): Since an ARIMA models

describe a random process, the time series needs to be stationary, which it is

not if it has either a trend or seasonality. The trend is usually achieved by

repeatedly differencing the series with a lag of 1: ∆yt = yt−yt−1. The number

of repetitions is denoted by the hyperparameter d. Seasonality is removed by

differencing not with the neighboring value, but instead the value one season

apart, e.g. ∆yt = yt − yt−7 for daily data with weekly seasonality. When

using the model for predictions, the process has to reversed by integrating

accordingly.

2. Autoregressive component: The autoregressive component makes predic-

tions based on the previous values. The result of this step is an equation for

the weighted sum of previous values:

yt := c+ α1yt−1 + . . .+ αpyt−p (2.7)

where p is the number of previous values used and a hyperparameter. The

parameters αi are approximated using linear regression. Increasing the number

of lags used (p) might lead to a better fit on the learning data, but also

increases the likelihood of overfitting (Hyndman and Athanasopoulos, 2013).

While the choice of optimal hyperparameters used to be a judgment call of

the data scientist, there are now plenty of methods for estimating optimal

hyperparameters (De Gooijer and Hyndman, 2006).

3. Moving average – Prediction using previous errors: A moving average

model of order q describes a random process, that only depends on white

noise and the weighted average of the q previous values of itself. Assuming

the autoregressive component is able to approximate the series, the remaining
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error should look like white noise, and the series can therefore be approximated

by:

yt := AR-Component + bt−1 · Error (yt−1) + . . .+ bt−q · Error (yt−q) (2.8)

The result of these three steps is an ARIMA(p, q, d) model. In order to describe

seasonal data more accurately, there have been extensions to ARIMA, that not

only consider the previous observations, but also observations at previous seasons

(Williams and Hoel, 2003). Such a seasonal ARIMA model is additionally defined

by the length of a season S, as well es the number of seasonal orders (P,Q,D):

SARIMA(p, q, d)(P,Q,D)S). However, underlying assumptions and the overall ap-

proach remains unchanged.

Lastly, ARIMA models that also consider exogenous variables are called ARIMAX

models (Autoregressive Integrated Moving Average with Explanatory Variable).

The explanatory term is similar to the other two, in that it is also a weighted

sum of the previous explanatory variables xk:

yt = c+

p∑
i=1

aiyt−i +

q∑
j=0

bjut−j +
n∑
k=0

dkxt−k (2.9)

2.1.4 Forecasting using Neural Networks

Artificial neural networks are an approach for supervised machine learning tasks

loosely inspired by the mechanisms of the brain that can be applied to both regres-

sion and classification tasks. It can be understood as a “network of ’neurons’ which

are organized in layers“ (Hyndman and Athanasopoulos, 2013). For this work the

focus will be on the multilayer perceptron (MLP). A MLP consists of an input layer,

an output layer, and at least one hidden layer. The input layer simply passes the

input vector on to every perceptron in the first hidden layer. The perceptron is the

smallest unit of the network and inspired by synapses of the brain. Mathematically,

it will compute the weighted sum of the inputs given (S = b +
∑n

i=1Xiwi), includ-

ing a bias b, to which it then applies a function F called the activation function

(Y = F (S)), which will produce the final signal, that is sent to the next layer. The

values of the weights and the biases are adjusted during learning. The next layer

can either be another hidden layer or the final output layer, which is again made
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of perceptrons. In case of a classification task there usually is one perceptron per

class, whereas a MLP for regression tasks ends in a single perceptron.

Figure 4: A neural network with five input neurons and one hidden layer with four

neurons

If all neurons use a linear activation function, the whole network will act as a linear

transformation, which is usually not desired. Usually, a sigmoid function is used,

such as the hyperbolic tangent y(vi) = tanh(vi) with a return value ranging from

−1 to 1 or the logistic function y(vi) = (1 + e−vi)−1, which is similar in shape but

with a range of 0 to 1.

For a MLP with a single hidden layer and a sigmoid activation function, Lewicki

and Marino (1989) proved that it can approximate any continuous function with a

finite number or neurons (the so-called “universal approximation theorem“). The

mathematical assumptions under which this theorem holds are still an active area of

research, especially when it comes to deeper networks with more hidden layers and

computationally simpler activation function (Lu et al., 2017). One simpler activation

function is the rectifier f(x) = x+ = max(0, x). Its design is again inspired by

neurons (which cannot fire a negative electric impulse), but primarily motivated by

the computational complexity of aforementioned sigmoid functions. Not only is the

value easier to compute, it also allows for cf, leading to fewer computations overall.

Most methods used for training the model are based on the error back propagation

algorithm – iteratively adjusting the weights in order to decrease the error on the

training set. The algorithm can be described by the following three steps:

1. Initialization: A network architecture (number of layers and neurons) and
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the activation functions are chosen, after which the weights need to be initial-

ized, which are usually drawn from a uniform distribution with zero mean and

low values.

2. Forward Computation: All input vectors are passed through the network

and each neuron applies its weighted sum and activation function. At the end

an error signal is computed. In case of a regression task this could be the

squared distance of the single output signal to the real signal.

3. Backward computation: In order to reach a (local) minimum of the error

produced by the network weights are adjusted based on the error signal. The

amount of adjustment can usually be adjusted by hyperparameters such as

the learning rate or the momentum, which need to be adjusted to achieve a

balance between learning speed and stability.

When predict values of a time series, the problem needs to be reframed as a regression

problem. One such approach is a neural network autoregression model or NNAR

model (Hyndman and Athanasopoulos, 2013). It uses the lagged values of the time

series as input and the next observation as the output, the relation between which

has to be learned. When applied to seasonal data, the NNAR(p, P, k)m model is

described by four parameters:

• p: The number of lagged (previous) values that are part of the input

• P : The amount of previous seasons to be included

• k : The number of hidden neurons in the single layer

• m: The length of one season, e.g. 12 for monthly data

For example a NNAR(3, 2, 4, 12) has a total of four inputs (the three previous

observations and two observation from the last two season), four hidden neurons

and a seasonal length of 12 (monthly data). Compared to a SAMIRA model, which

would “see“ the same values, NNAR has two main advantages. Firstly, the series

does not need to be stationary. Secondly, the NNAR model is non-linear and might

therefore uncover non-obvious relationships.

The NNAR model can also be expanded to include any arbitrary additional infor-

mation (e.g. day of the week, temperature) simply by expanding the input vector,
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and maybe changing the structure of the hidden layer(s) to balance learning perfor-

mance and accuracy. Often these other values are on a different scale as the time

series, which can make learning more difficult. “One of the most common forms of

preprocessing consists of a simple linear rescaling of the input variables.“ (Bishop,

1995, p. 198), usually between 0 and 1 (scaling) or standardized with zero mean

and a standard deviation of 1 (standard scaling).

2.2 Concept Drift

2.2.1 Definition

Nowadays, learning algorithms are often deployed online and required to make con-

tinuous predictions or classifications (Chen et al., 2012). One example is a credit

card company monitoring all transactions in order to classify them either as “fraud-

ulent“ or “honest“. The main assumption is that both past and future transactions

are generated randomly from the same probability distribution. The algorithm is

therefore able to differentiate between the two classes based on previous examples

and the patterns it derived from them (Gama et al., 2004a). However, spending

habits of a person might change over time because of new interests. Or, the location

of transactions might change due to a relocation. At the same time, it is safe to as-

sume that fraudsters will always try to adopt their behaviours to remain undetected

by the algorithm (Malekian and Hashemi, 2013). As a result the relationship be-

tween the observations and the labels (fraudulent and honest) may change compared

to the training set.

In literature, concept drift is often fundamentally distinguished in two types: real

and virtual drift (Widmer and Kubat, 1996). Real concept drift describes a change

that happens in the real world (like a behaviour change), which changes the rela-

tionship between the input and the output. Whereas virtual concept drift occurs,

when the distribution of the incoming data changes, without an impact on the in-

trinsic relationship between input and output (Tsymbal, 2004). So far, most studies

have looked at concept drift in classification settings, compared to regression (Baier

et al., 2019). Therefore the following section will follow the notation of classification

problems.
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Formally, in Bayesian decision theory, an instance is classified based on a maximal

a posteriori probability. Instances are described by a p-dimensional feature vector

X and y is the corresponding label. Together they form a labeled instance (X, y).

For a given label y the a posteriori probability is given as

p(y|X) =
P (y)p(X|y)

p(X)
. (2.10)

Any of these distributions can be a source for concept drift (Žliobaitė, 2010), and

be of different concern in any given task. A change in p(y|X), usually as a result of

a change in the class conditional probabilities p(X|y), is referred to as real concept

drift and requires adaptation in the learning algorithm. Class prior probabilities

P (y) may change without effecting the decision boundary. But in cost-sensitive sce-

narios, where different kinds of errors (false-positives, false-negatives) have different

associated costs, this might still lead to different decisions. Similarly, a change in

the distribution of incoming data p(X) can occur without affecting p(y|X), which

is called virtual concept drift.

More succinctly, as defined by Gama et al. (2014), concept drift occurs between two

time points t0, t1 ∈ N, if there exists a X such that

pt0(X, y) 6= pt1(X, y), (2.11)

where pti describes the joint distribution at time ti of the input and output vari-

ables for i = 0, 1. Since the joint distribution is comprised of the aforementioned

distributions, these two definitions are functionally identical.

Besides the classification of concept drift in virtual or real, there are other commonly

used ways of describing and differentiating different occurrences of concept drift.

Figure 5: Types of concept drift (Gama et al., 2014)

One such categorization is how the drift develops over time. Gama et al. (2014)

distinguishes between four categories, illustrated in Figure 5. A sudden concept
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drift occurs instantly from one observation to the next (e.g. using a new sensor

in a predictive maintenance scenario), whereas incremental and gradual changes

happen over a longer period of time. An incremental concept drift is a continuous

shift towards a new concept with many steps in between (e.g. sensor wear and tear

leading to less accuracy). During a gradual change observations from two concepts

can be made at the same time, while the probability of finding an observation from

the old concept eventually reaches zero.

Concept drifts can also be reoccurring, where a concept might reappears at a later

point in time (e.g. fashion trends, that seem to reappear arbitrarily). According to

Žliobaitė (2010) this differs from the common notion of seasonality, since “it is not

certainly periodic“. Finally, it is important to not label an outlier, or plain random

noise, as a concept drift, since they do not require an adaption.

2.2.2 Handling Concept Drift

Table 1 gives an overview on strategies which can be applied for detecting and han-

dling concept drift. The first dimension refers to the application of an explicit drift

detection algorithm. The second dimension describes the adaptations of the under-

lying ML model. The simplest option is the development of a robust, static ML

model which is trained once and then deployed for an ongoing prediction (Guajardo

et al., 2010), the upper left case in Table 1. Other approaches continuously adapt the

prediction model, e.g. with a sliding window where new data instances are contin-

uously used to adapt the prediction model (Kuncheva and Žliobait\.e, 2009). Such

approaches rely on an ongoing adaptation of the prediction model. The frequency

of the adaptation can be chosen arbitrarily, or be based on expert knowledge, like

known seasonal patterns (Guajardo et al., 2010). Depending on the complexity of

the model, this requires a lot of computational power. Furthermore, time constraints

might also not allow the retraining of the entire model before the next prediction is

required, especially in environments with limited resources, e.g. on mobile devices

(Oneto et al., 2015). The lower part of the table depicts approaches which rely on

a dedicated drift detection. Drift detection can be handled by an algorithm which

detects drifts in the incoming data or the distribution of the prediction error. Based

on detected drifts, the model can either be retrained (Pechenizkiy et al., 2010) or
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another model can be applied. Approaches with and without drift detection are also

referred to as implicit and explicit detection models (Cavalcante et al., 2016).

Model Adaption

D
ri

ft
D

e
te

ct
io

n
No Yes

No Static model Window-based approach

Yes
Drift detection with

model change

Drift detection with

model adaptation

Table 1: Model adaptation and drift detection options

Explicit drift detection methods can either monitor incoming data streams or the

error-rate of base learners (Cavalcante et al., 2016). These methods detect concept

drifts using statistical tests. Their main advantage over implicit methods lies in their

relative resource efficiency and their white-box approach, where the user is informed

about the presence of a concept drift. Looking back at the definition for a posteriori

probability (see equation 2.10), error-based approaches only consider changes in

a posteriori distribution p(y|X) through the changing classification error. On the

other hand, detection-based methods observing incoming data streams look only at

p(X), which in turn can mean that a virtual concept drift is detected, which does

not actually have an impact on the classification task.

A well-known drift detector is the drift detection method (DDM) (Gama et al.,

2004b). As an error-based approach, it tracks the classification error of a base learner

and assumes that a change in concept leads to more frequent miss-classifications,

based on the PAC learning model (Probably Approximately Correct). As new clas-

sifications are made, the detector computes the rate of miss-classification so far pi

and the standard deviation (si =
√
pi(1− pi)/i), storing the values as pmin and

smin, when pi + si reaches its minimum. The error-rate pi is a random variable

from Bernoulli trials and can be described by a Binomial distribution, which for a

sufficient number of samples (n > 30) is approximated by a Normal distribution.

A drift warning level is reached, when pi + si ≥ pmin + α · smin. The authors sug-

gest a warning level of α = 2.0, which corresponds to a confidence of 95%, that

a change in distribution has occurred. Once the warning level is reached the de-

tector stores the incoming instances in anticipation of a possible concept drift. If
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pi+si ≥ pmin +β ·smin, the drift level is reached. The suggested threshold of β = 3.0

indicates 99% confidence, that a drift has taken place. Consequently, the detector

and base learner are reset, and a new base learner is trained using the instances

stored since the warning level. The factors for the warning and drift level can be

changed to adopt the drift detector to the given context.

Expanding on this, Baena-Garćıa et al. (2006) developed the early drift detection

Method (EDDM), which is more geared towards detecting slow gradual changes

by using the distance-error-rate pi of the base learner, which describes the distance

between two classification errors. Instead of a decreasing error-rate, the EDDM ex-

pects the distance-error to increase over time, storing pmax and smax when pi + 2 · si
reaches its maximum value. Again, there are two thresholds, determined by the pa-

rameters α and β. A warning level is reached, when (pi + 2 · si) / (pmax + 2 · smax) <

α, and a drift level when (pi + 2 · si) / (pmax + 2 · smax) < β. In the original paper α

and β are set to 0.95 and 0.90 respectively.

The ADaptive sliding WINdow (ADWIN) detector (Bifet and Gavaldà, 2007),

works without a base learner and instead evaluates the averages over dynamically

sized windows. When the mean remains relatively constant, the window size in-

creases up until a maximum size W . However, it uses a variant of the exponential

histogram to store the data in only O(logW ) memory. Within this adaptive window,

the detector tries to find two large enough sub-windows that are distinct enough, and

if it does, the instances of the sub-windows are drawn from different distributions,

and a concept drift is detected. The detector can be tuned with the hyperparame-

ter δ, called the confidence parameter, which quantifies the threshold for “distinct

enough“. While ADWIN does not assume any particular data distribution, its main

disadvantage is that it does not detect gradual concept drift as good as other ap-

proaches (Gonçalves et al., 2014).

A detector that can both be used to monitor the incoming data stream directly or

through the accuracy of a base learner, is the Page-Hinkley (PH) Test (Page,

1954). This sequential analysis technique tracks the average accuracy up to the

current point in time x̄T and the cumulative difference between the average and the

actual values mT =
∑T

t=1 (xt − xT − δ), where δ specifies the tolerable magnitude

of changes. PH tests the difference between the current value of mT to its minimum
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observed value and flags a change, when the difference is larger than the threshold

λ (user defined).

2.2.3 Concept Drift in Regression Tasks

As motivated in Section 1), this work will focus on a real world dataset describing

taxi demand in New York City, with the goal of predicting the future demand. As

such, this task is a regression problem, instead of a classification problem which

has been the main focus of this chapter so far. Unfortunately, most of the research

examined by Baier et al. (2019) focuses on classification tasks (29/34). However,

many ML challenges need to be modelled as regression tasks and approaches for

classification cannot be applied, e.g. 20 out of 89 studies applying ML and being

published in ECIS and ICIS between 2010-2018 are regression problems. But, there

is a key difference between classification and regression tasks, when it comes to

concept drift, which so far has not been studied extensively: “Every change in

p(X) affects p(y|X), since p(X) and p(y) are drawn from the same distribution.“

(Cavalcante et al., 2016). Therefore the notion of concept drift goes beyond simply

determining the trend, as a change in concept can change the overall shape of a time

series, without affecting its mean.

Detectors such as DDM or eDDM are designed for classification problems, mean-

ing they assume the classification error to be the result of a Bernoulli process and

therefore follow a binomial distribution. The error of a regression problem however,

is continuous instead of discrete and follows a nominal distribution. Still, as long as

the Central Limit Theorem holds, a Binomial distribution is closely approximated

by a Normal distribution for a a sufficient large number of examples, which is also ex-

ploited by DDM Gama et al. (2004b). Cavalcante and Oliveira (2015) have adapted

DDM for a regression task, monitoring the mean prediction error instead of the

classification error-rate. On the other hand, eDDM evaluates the distance between

classification errors, which has no direct analogy in a regression setting. For this

type of detector it is necessary to transform the prediction error into a classification

error, e.g. by labelling predictions that fall within a certain percentage of the real

value as correct (Xiao et al., 2019). On the other hand, drift detectors that monitor

the data stream directly, such as PH and ADWIN do not need to be changed in a
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regression setting.

2.2.4 Commonly used Datasets

Figure 6: Example of artificial time series used by Cavalcante et al. (2016)

In order to evaluate and compare these different approaches most papers use a com-

bination of artificial and real-world datasets. Using artificial or generated datasets

has multiple advantages: Anyone can recreate the dataset, there is no ambiguity

regarding preprocessing and it is known when and how strongly concept drift occurs

(Gama et al., 2014). All of the artificial datasets presented by Gama et al. (2014)

generate labeled data for a classification task. For regression tasks, one approach

used by Cavalcante et al. (2016) is to generate time series (e.g. based on an au-

toregressive process, see Section 2.1), and “stitch“ them together, creating a new

time series with known concept drifts. A visualization is shown in Figure 6. When

evaluating a drift detector in isolation, common evaluation metrics are accuracy,

evaluation time, as well as false alarm and miss detection rates (Gonçalves et al.,

2014).

While evaluations on artificial datasets have a high degree of internal validity, ex-

ternal validity can only be assumed (Gama et al., 2014). Therefore using real-world

datasets is also valuable in determining the effectiveness of concept drift adapta-

tions. However, the main challenge is that most of the real-world datasets used

have “little concept drift in them, or concept drift is introduced artificially“ (Tsym-

bal et al., 2008). Among the most commonly used datasets are the Airlines and
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Electricity datasets provided by the Massive Online Analysis framework.1. In the

Airlines dataset each sample represents a single flight and the task is to predict if the

flight arrived on time, ranging from 1988 to 2008. The Electricity dataset describes

the prices, which are affected by demand and supply. The label corresponds to the

price being above or below the moving average of the last 24 hours. It contains

45.312 instances over 2 years.

The aim of this work is to analyze a dataset which shows the following characteristics:

• It is openly available, making it easy to reproduce the results

• Novelty in the context of concept drift research, validating approaches on

another real-world dataset

• It describes a regression task, to expand the discussion of concept drift into

this area

• It spans a relatively large time span, making it more likely that concept drift

occurs

The NYC taxi trip dataset (TLC, 2019) fulfills these criteria. Therefore, it will be

subject of the further analysis of this thesis. A detailed description of the dataset

can be found in Section 3.1.

2.3 Data Mining Process under Concept Drift

Evolving streams of data challenge many assumptions of standard data mining and

machine learning settings (Žliobaitė et al., 2016). In a system that does not consider

the changing nature, models may become less accurate over time or “opportunities

to improve the accuracy might be missed“ (Žliobaitė et al., 2016). Therefore the

challenges of concept drift have to be considered at every point in the data mining

or machine learning process.

CRISP-DM (cross industry standard process for data mining) is a standardized

process for data mining projects. The methodology is described on four levels of

abstraction: phases, generic tasks, specialized tasks, and process instances (Wirth,

1995). However, for this work, the focus will be only on the six phases:

1Theses datasets can be accessed at https://moa.cms.waikato.ac.nz/datasets/

https://moa.cms.waikato.ac.nz/datasets/
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Figure 7: Phases of the CRIPS-DM Process Model for Data Mining (Wirth, 1995)

1. Business Understanding aims at determining the business goals and require-

ments and translate them into a rough outline.

2. Data Understanding is about doing a first analysis of the available data and

its quality.

3. Data Preparation starts with data selection and is often accompanied by build-

ing or maintaining a data warehouse. It also includes any form of preprocessing

like handling missing information, removing redundancies, or reducing data.

4. Modeling focuses on the selection, initialization and tuning of data mining

techniques, usually comparing multiple approaches.

5. Evaluation typically considers offline evaluation on historic data to determine

the best approach for the given business goal.

6. Deployment of the final model concludes the phases, when the model is inte-

grated in the existing service environment.

As shown in Figure 7, the process is not linear and contains certain feedback loops.

However, it still assumes that most phases are performed offline, separate from the

deployed model. As data streams are expected to change, monitoring and updat-

ing models should become a “natural and core part of the data mining process“

(Žliobaitė et al., 2016). A modification of CRISP-DM for an adaptive setting is
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shown in Figure 8. The main difference is, that data preparation, mining, and

evaluation is automated as part of the deployment.

Figure 8: Towards CRISP for adaptive mining (Žliobaitė et al., 2016)

A standardized process like CRISP-DM leaves many questions purposefully open to

the practitioner. In their book Machine Learning Logistics, Dunning and Friedman

(2017) propose an architecture that facilities model management in a streaming

context called the “Rendezvous Architecture“. An outline of the architecture is

presented in Figure 9. It expands the basic request/response paradigm in multiple

key areas:

1. Leveraging streaming-based micro-services : Having a single application to di-

gest a request, perform preprocessing, do computations and return a value

is only feasible in early stages. Separating concerns into encapsulated micro-

services allows for more flexibility and traceability of changes. Connecting

these services via data streams (such as the open-source library kafka2) de-

couples the services and allows them to be switched out with minimal impact.

2. Containerization: Putting every piece of code inside a container allows it

to be executable and behave predictably on both local machines and large

server farms. A data scientists does therefore not have to worry about any

side-effects and can focus on his work, while orchestrators ensure that the

production system is running.

3. Keeping multiple production models : There can be plenty of reasons to keep

many models online. E.g. when A/B-Testing to evaluate the effects a new

model has, or to compare multiple models in a real production environment.

Through the de-coupled architecture, this can be done with minimal impact

on the service.

4. Rendezvous Server : A Rendezvous Server is deployed and operates between

the output-stream from the models and the response stream. For every request

2https://kafka.apache.org/
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it sees, an inbox is opened to keep track of incoming decisions by the models.

Here, decisions can be implemented on how to choose which model result to

return to a given request.

This decision can be based on A/B-Test requirements, model performance,

or be timer-based, returning the best available result after a certain time has

passed to fulfill service level agreements.

Figure 9: Core rendezvous design (Dunning and Friedman, 2017)

Not all of the models reading from the input stream need to serve the same function.

Figure 10 shows how there can be models with a different target than the result

stream, where their result would be picked up by the Rendezvous service. A decoy

model is used solely to archive the data stream. Archiving the data stream here,

ensures that data is archived exactly as it was seen by the models. This can help

when debugging a problem or doing an analysis later. Additionally, a canary model

should be deployed. The canary model can be a former production model, which

is well-understood, but has since been replaced by a generally improved model. Or

it is a model that was specifically designed to be easily understandable, with “good

enough“ results, like a simple decision tree or a linear regression. There are two

main advantages to this approach: First, if the delta between the canary and the

real model changes, it can be assumed that the input data has changed. In this way

it serves as some kind of drift detector. Second, comparing every new production

model to the same canary model helps data scientists build an understanding of its

behaviour enabling them to detect anomalies quickly.
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In conclusion, it becomes clear that the challenge of concept drift cannot simply be

seen a challenge on the algorithmic level. If businesses want to reap the benefits of

analyzing changing data streams, the effects of and measures against concept drift

need to be considered early on. De-coupling the overall architecture, as done in the

Rendezvous Architecture, and thinking of drift detection as one part in a process

can help to build a dynamically adaptable and extensible data service.

Figure 10: Integration of a canary model into the rendezvous architecture (Dunning

and Friedman, 2017)

2.4 Taxi Demand Prediction

Thanks in large part to the momentum of the sharing economy through companies

like Uber, Lyft and Lime, predicting traffic patterns and demand in cities has become

an increasingly popular area of research (Abduljabbar et al., 2019). These usually

app-based businesses are capable of collecting large quantities of precise data. In

a fierce market filled with venture capital, they must compute on user experience

and comfort, which is often facilitated by machine learning approaches (Liao et al.,

2018). This section discusses related work in the research area of short-term taxi

demand forecasting, focusing on the New York City taxi dataset. A more detailed

look at the dataset, and how it is preprocessed for this work is given in Section 3.1.

One particular area of interest is the question of how to discretize the (almost) con-

tinuous feature space into spatial and temporal buckets. Xu et al. (2018) evaluate

the data over a 3.5 year period starting in 2013. They divide the location data into

a grid with a cell size of about 153mx153m and feed weekly sequences taxi demand
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Figure 11: Representation of the Geohash and Voronoi tessellations as graphs, from

Davis et al. (2019)

data into a Long Short Term Memory (LSTM) recurrent neural network (RNN).

When evaluating the accuracy of their model using different temporal resolutions

(from 5 to 60 minutes), they conclude that the “RMSEs are very close under dif-

ferent time-step lengths.“ (Xu et al., 2018). The question of spatial discretization

(also referred to as tessellation) has been analyzed by Davis et al. (2018), compar-

ing Voronoi tessellation with Geohash tessellation. Veronoi tesselation is a grouping

based on nearest neighbors, whereas Geohash tessellation is grid based (see Fig-

ure 11). The predictions were done using statistics-based models like ARIMA and

exponential smoothing. They conclude, that “Geohash tessellation was the winning

strategy for [New York City]“ (Davis et al., 2018), while noting that the optimal

choice of tessellation strategy is heavily dependent on “the demand density in each

partition, and the geography of the city“. In their follow-up paper, they introduce

an ensemble approach, which combines predictions based on each of the tessellations

(Davis et al., 2019). Thereby they achieved a prediction accuracy “close to the best

model at each time instant“.

However, it is not possible to directly compare the error metrics provided in these

papers, since the results of deep learning methods are known to be very dependent

on the dataset, in this case on the exact preprocessing. Especially the size of each

cell, and therefore the amount of demand in each cell has a large impact on the

error metrics. This will be discussed in more detail in Section 3.2.4. An apples-to-

apples comparison between two deep-learning approaches was made by Liao et al.

(2018) on the NYC taxi dataset. The first approach, called ST-ResNet, is built

around the convolutional neural network ResNet and was originally applied to ride-

hailing data from Beijing (Zhang et al., 2016). The core idea was to model the
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problem in terms of inflow and outflow of crowds into each region, where people

might want to leave a region again via taxi after a certain amount of time has

passed. Three separate networks were trained to capture this dependency at short-,

medium-, and long-term temporal distances and the predictions of each network

combined (fused) as a weighted sum. An overview of the architecture is shown

in Figure 12. The second deep-learning approach evaluated is called FCL-Net. It

has a similar overall structure, learning separate models at three different temporal

categories, but instead of ResNet, Ke et al. (2017) use a convolutional long short

term memory architecture (ConvLSTM). Their work was originally evaluated on

ride-hailing data from DiDi Choxing, a Chinese service operating in Hangzhou.

Figure 12: Architecture of ST-ResNet (Zhang et al., 2016)

For the comparison Liao et al. (2018) used two years of data from 2014 to 2016 from

Manhattan only, dividing the borough into a 32x32 grid, each cell covers about

200 by 400 meters. Additionally, they annotate the data with information about

workdays/weekends, holidays, and 9 weather-related features. Surprisingly to the

authors, the supposedly more capable FCL-Net performed worse with an RMSE of

15.11 compared to ST-ResNet’s 11.13. According to the authors this could have two

possible explanations. Either, the coarse-grained temporal dependencies captured
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by the architecture (i.e. using three separate networks) might be more important

than the “fine-grained temporal dependencies as captured by LSTM“ (Liao et al.,

2018). Or the spatial dependency is more important, which is presumably better

captured by ResNet.

A drift-aware approach to the taxi demand problem, called BRIGHT, was published

by Saadallah et al. (2018). BRIGHT is an ensemble-based approach, which combines

a diverse set of models to handle distinct types of concept drift, that might occur in

the traffic demand domain. The ensemble operates in two stages: model selection

and stacking through model averaging, as illustrated in Figure 13.

Figure 13: Illustration of BRIGHT framework (Saadallah et al., 2018)

Model selection is done for two families of base learners, ensuring a diverse ensemble.

A family is a grouping of models that are similar in their approach. The first family

consists of univariate models, considering only the values of one time series, i.e.

the demand pattern of one region. The univariate family consists of Time-Varying

Posson Process (TVPP), Fading-Factor TVPP, and ARIMA. The second family of

base models groups multivariate approaches that also consider demand information

from neighboring regions. They are an L1-regularized Vector AutoRegressive process

with exogenous variables (L1-VARX), and a Drift-Aware VAR process, both of which

are novel approaches. For each family a family winner is selected based on the a

fixed-size sliding window loss. The selection is dynamic and will be re-evaluated,

when a Page-Hinkley test triggers a drift alarm.

The second stage, Stacking through model averaging combines the two predictions
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from the two family winners. Inspired by work from Moreira-Matias et al. (2013b),

it uses a fixed-size sliding window to determine the importance of the models in the

final decision based on the recent loss. This strategy ensures a “a blind adaptation

to drift“ (Saadallah et al., 2018) at the second ensemble stage.

The authors validated their approach using datasets from the cities of Porto, Shang-

hai and Stockholm, as well as synthetic data. They conclude that the approach was

in fact capable of adapting to different kinds of concept drift, leveraging the strengths

of the individual predictors. However, they note that the simplicity, both in the en-

semble approach as well as the individual models, limits the approaches’ ability to

capture non-linear dependence structures or recall reoccurring concepts.

While there has been a considerable amount of research on this particular dataset,

most of it is focused on getting the best predictive performance, and only considers

a relatively short period of times. So far, no comprehensive evaluation on concept

drift of NYC taxi trips has been published. More recently, some work has been

done to consider transportation demand data as an interesting dataset in regards to

concept drift.

2.5 Evaluation Metrics

The decision, which measure to use when evaluating a time series prediction, is

always a subject for debate (Flores, 1986). The relevant error metric depends heavily

on the application, for example when the cost of over-predicting is much larger than

the cost of under-predicting. In general, measures for accuracy are divided into

relative and absolute measures, the most popular of which are listed in Table 2. In

this table the error in period i is defined as the difference between the real value

and the forecast, Ei = Xi − Fi; the percentage error PEI for period i is defined as

PEi = [(Xi − Fi) /Xi] ∗ (100).

The meaning of a certain absolute error is uncertain without knowledge of the do-

main – a deviation of 100 might be acceptable when predicting sales units, but not

so when predicting the temperature. Usually, the root mean squared error (RMSE)

is used, because it is desirable to weigh outliers more heavily, and the result will

have the same unit as the input data (Flores, 1986).



2. THEORETICAL FOUNDATIONS 29

Name Equation

Absolute
Mean Absolute Deviation MAD =

∑n
i=1 |Ei|/n

Mean of Squared Errors MSE =
∑n

i=1E
2
i /n

Root Mean Squared Error RMSE = [
∑n

i=1E
2
i /n]

1/2

Relative
Mean Percentage Error MPE =

∑n
i=1 PEi/n ∗ 100

Mean Absolute Percentage Error MAPE =
∑n

i=1 |PEi| /n ∗ 100

Symmetric Mean Absolute

Percentage Error
sMAPE = 100%

n

∑n
t=1

|Ft−At|
|At|+|Ft|

Table 2: Commonly used measures for accuracy

Relative errors are easier to interpret, since no prior knowledge of the scale of the

input is required. While the mean absolute percentage error is easy to understand

and analogous to the RMSE, it has one disadvantage – its value is not bound, and

can reach very high values, when the actual value is low. The symmetric mean

absolute percentage error (sMAPE) fixes this shortcoming and is always between

0% and 100%. As with any relative measure, problems arise when a series contains

zero values, which tends to be the case more frequently when describing demand or

count data. If both prediction and actual value are zero, the sMAPE is undefined.

Since the prediction was in fact correct, this case needs to be considered and the

sMAPE defined to be 0%.

When comparing the accuracy of two models on the same dataset it can be helpful

to consider statistical tests to determine, if the difference is significant or simply a

result of the specific data values in the sample. In this work the Diebold-Mariano test

(DM-Test) will be used, as proposed by Diebold and Mariano (1995). It considers

the loss-differential di of the two forecasts, which is a time series derived from the

residuals. Let ei and ri be those residuals, and di the loss-differential.

di = e2i − r2i = (yi − fi)2 − (yi − gi)2 (2.12)

It is assumed, that the expected loss-differential is equal to zero, e.g. µ = E[di] = 0,

which forms the null hypothesis. The DM statistic is then defined using the mean

differential and the autocorreclation function yk, which describes the autocovariance

at lag k. The number of lags considered, h, can be chosen freely, but it is generally
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sufficient to use h = n1/3 + 1

γk =
1

n

n∑
i=k+1

(
di − d

) (
di−k − d

)
(2.13)

DM =
1
n

∑n
i=1 di√[

γ0 + 2
∑h−1

k=1 γk

]
/n

(2.14)

If the null hypothesis holds true, the DM follows a standard normal distribution

under the assumption that the loss differential time series di is stationary. Thus,

the two-tailed critical value for the standard normal distribution can be used at the

desired significance value α. For α = 5%, the critical z-values are 1.96 and −1.96.
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3 Design and Implementation

In this chapter all the moving parts required to evaluate and possibly answer the

two research questions are laid out. Section 3.1 builds up an understanding of the

taxi demand use-case and the New York City dataset, which will be used throughout

the work. Next, the models used for prediction are introduced in increasing com-

plexity and evaluated over a one-year period in 2012. Finally, possible strategies

for mitigating the effects of concept drift are presented, including the novel error

intersection approach.

3.1 New York City Taxi Demand

The NYC taxi trip dataset (TLC, 2019) is a public dataset provided by the New

York Taxi and Limousine Commission (TLC), which is the agency responsible for

regulating taxis and for-hire vehicles in the city of New York. It contains information

about all individual taxi trips that take place in the city, published separately for

yellow taxis, green taxis and for-hire vehicles. Yellow taxis (officially called medallion

taxis), are limited by the TLC through the number of licenses made available and are

the only type of taxi, that is allowed to be hailed in Midtown Manhattan, Downtown

Manhattan and the two airports LaGuardia and JFK. On the other hand, green taxis

were introduced in 2011 to better serve the other boroughs of New York. Even if

they cannot pick up passengers in the aforementioned regions, they are allowed to

drop off passengers there. Finally, for-hire vehicles perform pre-arranged trips and

include for example black cars, luxury limousines and app-based services, such as

Uber and Lyft.

One goal of this thesis is to explore concept drift on a real world dataset. In com-

parison to the datasets introduced in 3.1, the NYC taxi trip dataset stands out. It

spans a comparatively large time span (over ten years), starting in January 2009,

and still is updated regularly. Over time, the dataset has grown to include over 1.4

billion rides by June 2018. Given that taxi trips are closely tied to people’s habits

it can be assumed, that there is a lot of potential for change over time. At the same

time, it seems impossible to also monitor all possible factors, which can impact taxi
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ridership. Some, like current weather and public holidays, are relatively easy to

include, while popular night clubs, or local subway interruptions are not.

Over time, the data provided by the TLC has changed considerably. Every trip

until June 2016 is recorded with precise coordinates for both the drop-off and pick-

up locations. This has been widely criticized by data privacy advocates. For once,

precise coordinates (reported with 13 significant digits), can directly point to a

single household in sparse communities. Additionally, Tockar (2014) showed, how

they could link public sightings of celebrities entering cabs with a single data point,

where they could look up the tip amount. Since June 2016, the data refers only to

the “Taxi Zone“ of the pick-up and drop-off, of which there are 263. These zones are

not chosen arbitrarily, but instead are roughly based on NYC Department of City

Plannings Neighborhood Tabulation Areas, which are meant to approximate existing

communities and neighborhoods. Additionally, taxi zone 264 represents coordinates

that were not available (“NA“) and taxi zone 265 represents rides where the recorded

coordinates were invalid (“NV“).

Figure 14 shows how the starting points for yellow taxis are distributed over the

regions. Because of their special legal status, it makes sense, that the majority of

yellow cab pickups take place in Manhattan and at JFK and LaGuardia airport. In

fact, of the fifty busiest regions forty-eight are in Manhattan, the other two being

the airports. Therefore, this work will primarily focus on the twenty taxi zones with

the highest overall demand (which already account for almost 60% of taxi demands),

in order to reduce the amount of computational complexity. A list of these regions

can be found in Appendix A.1.

In order to use the entire temporal range of data from the dataset, this work will

focus on the yellow taxi data, matching the rides before mid-2016 to their corre-

sponding taxi zones. While limiting the scope means that the data does not properly

reflect overarching transportation trends of New York City, it more closely resembles

a use case, where data on the activity of a competitor is not available. The yellow

taxi trip data consists of monthly CSV files, where each line represents a single taxi

trip. It includes seventeen attributes per trip, describing the trip itself (pick-up,

drop-off, trip distance, passenger count) as well as the fare (amount, payment type,

tip/tolls amount). However, since the task at hand is about planning and dispatch-
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Figure 14: Distribution of rides over regions

ing the taxi fleet, most of these features are not needed. Taxi demand, for this

work, will be assumed to be approximated by pick-ups, which is the best available

predictor in this case (Liao et al., 2018). Consequently, each trip is characterized

only by its pick-up location and timestamp.

As stated by the TLC, the dataset is not cleaned or checked before being published.

Therefore, it is necessary to check the data for invalid or implausible records. The

following criteria have been used to label a record as invalid and exclude it from

further analysis:

1. Trips with exact coordinates that start outside any of the 263 taxi zones

2. Trips that are assigned taxi zones 264 (“NA“) or 265 (“NV“)

3. Trips with a metered distance of zero or lower

4. Trips where the drop-off time is not after the pick-up time

5. Trips with a negative total fare

6. Trips that take place in a different month than the CSV file name indicates

Additionally, the raw data is not aware of daylight saving time, which begins on the
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second Sunday of March and ends on the first Sunday of November. This leads to

a gap each march when the clocks are moved forward from 2:00am to 3:00am, when

working with timezone näıve timestamps, which would violate the equi-distance

assumption outlined in Section 2.1. Using a timezone-aware timestamp in pandas,

this pitfall can be mitigated. The shift back to normal time in November, however,

is more challenging. Since the raw data is reported without timezone information

the time span between 1:00am and 2:00am contains unusually many rides. For this

work the assumption is made that demand is split evenly between “1:00am daylight

saving time“ and “1:00am normal time“.
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Figure 15: Overall distribution of rides over time, sum of past 28 days

In the field of spatio-temporal forecasting, it is common, and often times compu-

tationally necessary, to discretize the data (Davis et al., 2019). Spatially, the data

is segmented into the 263 taxi zones for all rides after June 2016. For all rides

that took place before June 2016 the coordinates were matched to their respective

region. Temporally, the data provides timestamps with an accuracy of one second.

Related work using the same dataset has most commonly used an hourly resolution

(Liao et al. (2018), Davis et al. (2018), Zhao et al. (2016)), with some also exploring

shorter intervals (Xu et al. (2018) or Moreira-Matias et al. (2013a)). Here, the trips

will also be binned into hourly intervals.

Figure 15 shows the overall trend of all yellow taxi rides from 2009 until 2018. On

this scale, the data seems to follow a yearly seasonality, with local minima around
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January and August. After 2012 the overall trend clearly indicates a decrease in

demand, presumably due to the rise of competitors. The figure also shows the

reported number of rides by Uber (reported as part of the FHV data) increasing

rapidly. While Uber has been operating in New York since 2011 (Uber, 2011), the

TLC only started providing the data in 2014. In terms of the types of concept drift

introduced in Chapter 2.2.1, this can be described as an incremental concept drift

where data patterns evolve over time.

0 4 8 12 16 20 24

Hour

0

500

1000

1500

M
ea

n
d

em
an

d

Midtown Center

0 4 8 12 16 20 24

Hour

East Village

0 4 8 12 16 20 24

Hour

LaGuardia Airport

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
0

500

1000

1500

2000

M
ea

n
D

em
an

d

Figure 16: Mean weekly progression in Q2 2011

Taking a closer look, the data also exhibits a strong weekly seasonality, as shown

in Figure 16. This intuitively makes sense, since most peoples life follows a weekly

routine. At the same time, the way this seasonality plays out can differs between

regions. A region like Midtown Center, which is mixed residential and business,

has clear rush-hour peaks and slower weekends, whereas East Village, known for its

night clubs, has its peaks late in the evening towards the weekend. Another inter-

esting trend can be observed at airports, where demand remains relatively constant
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throughout the day.
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Figure 17: Taxi ridership during the blizzard of January 2015

Another source of drift in the dataset are extreme weather events, such as hurricanes

or blizzards. Naturally, as the daily life of New Yorkers gets disrupted, so does the

taxi demand. Figure 17 depicts the taxi demand of Tuesday, January 27th, 2015

(in blue) and the average demand on Tuesdays in 2015 (in red) as well as the

25% and 75%-quantile of the average demand. During night and early morning a

Blizzard passed NYC with declared snow emergencies and a controversial subway

shutdown. Such an event can be described as a sudden concept drift. Similarly,

holidays or special events greatly impact citizens behaviour and can therefore be

regarded sources of concept drift.

In this particular use case, it seems rather easy to identify factors (e.g. weather)

which have a large influence on the prediction power of a model as well as how to

include this information as predictive features. This might also be due to the nature

of the overall project since nearly everyone has already used a taxi as a means of

transportation. However, in hindsight it is always easy to identify unusual demand

patterns and subsequently investigate the underlying reason. For a predictive model,

though, this information is required in real time. In other use cases and application

areas, it is generally difficult to identify influencing variables apart from the obvious

dataset. In case those can be identified, it is often impossible to measure and

quantify those factors, which is why they are often referred to as “hidden variables“
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(Žliobaitė et al., 2016). Therefore, this work restrains the inclusion of external data

sources.

In Table 3 an excerpt of the final dataframe is shown. Each column represents the

demand in a single taxi zone (here the largest seven zones are shown), and each row

represents one hour. Overall, the data now contains 263 columns and 83,231 for a

total of almost 22 million observations.

Taxi Zone 79 161 162 170 230 236 237 . . .

Time

2009-01-01 00:00:00-05:00 551 339 190 357 38 290 331 . . .

2009-01-01 01:00:00-05:00 565 220 257 472 90 273 323 . . .

2009-01-01 02:00:00-05:00 497 172 241 437 119 243 210 . . .

2009-01-01 03:00:00-05:00 563 108 238 354 231 172 133 . . .

2009-01-01 04:00:00-05:00 524 79 128 176 229 70 55 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3: Excerpt of the dataframe that is the basis for the following analysis

3.2 Predictors

It is the aim of this work to predict the taxi demand for the next hour, which can be

described as a one-step out-of-sample prediction. For example, at 8am on May 20th

2019, the model is asked to predict the taxi demand for the next 60 minutes. It is

assumed, that information about past rides reaches the model in real-time, therefore

the entire demand history until 7:59:59am is known to the model. Looking at the

data for each region separately, it can be considered an equidistant time series, as

defined in Definition 1, giving the opportunity to leverage the well-established field

of time series prediction. The predictors where selected to include three levels of

complexity - Baseline Predictors that make no (or barely any) assumptions about the

data; an Established Predictor with a strong statistical underpinning; and a Complex

Predictor that uses a neural network. This section describes the parameters and

implementations used and briefly discusses the predictive accuracy of each predictor

for the year 2012, years 2009-2011 being used as training and validation data when

needed.
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3.2.1 Baseline Predictors

As is common practice when evaluating time series prediction, a näıve predictor is

included as a baseline (Hyndman and Athanasopoulos, 2013). This predictor makes

no assumptions about the data presented and uses the demand of the previous

hour as the prediction for the next hour, for each region separately. Additionally, a

baseline predictor that takes advantage of the weekly seasonality is used. In reference

to the work of Dunning and Friedman (2017) it is referred to as the canary model.

This predictor calculates the mean delta from the previous hour to the next hour of

the past 4 weeks, and adds this delta to the observation from the last hour - again

separately for all regions:

ŷt = yt−1 + mean delta of last 4 weeks

= yt−1 +
1

4

4∑
i=1

y(t−i×168) − y(t−i×168+1)

(3.1)

Given the historical data as described in Chapter 3.1, these predictions can be com-

puted efficiently using panda’s .shift() function3, since the time series is equidis-

tant (Program Code 1). Additionally, the output is clipped, since a negative demand

is not possible.

Code 1 Baseline Predictors in Python with Pandas

1 def naive_predictions(df):

2 return df.shift(1)

3

4 def canary_predictions(df):

5 return (df.shift(1) + sum([df.shift(168*i) - df.shift(168*i + 1) \

6 for i in range(1,5)]) / 4).clip(lower=0)

In Figure 18 predictions for the first two days of May 2012 in the taxi zone 237,

Upper East Side South, are shown. The prediction of the baseline predictor clearly

lags behind the true demand by one hour, whereas the canary predictor is already

capable of closely following the daily trends, in this case characterized by rush-hour

peaks in the morning and evening. Though both predictions appear to be relatively

3Pandas is a open-source library for data analysis in Python (McKinney, 2010)
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close, evaluating the error metrics for the entire year 2012 over all regions paints a

clear picture. The näıve predictor has a RMSE of 49.72, whereas the canary has a

RMSE of 28.97. This large difference in predictive quality was to be expected, since

the canary predictor includes prior knowledge about the data (weekly seasonality)

and is more robust towards outliers thanks to its moving average approach. However,

in the twenty largest regions, the error significantly increases to 153.89 (näıve) and

88.19 (canary) respectively. These regions experience much higher fluctuations in

taxi demand, from less than 100 overnight, to over 1500 during peak hours, whereas

171 regions never have more than 100 taxi trips in one hour. It is therefore expected

to have a much higher RMSE. For the same reason, the relative error (sMAPE) is

usually lower in regions with less demand (Table 4), since these models rely heavily

on the single previous observation.

04-30 23

05-01 05

05-01 11

05-01 17

05-01 23

05-02 05

05-02 11

05-02 17

05-02 23

0

500

1000

1500

#
R

id
es

Real

Persistence

Canary

Figure 18: Predictions of the baseline predictors

3.2.2 Established Predictor

After describing and evaluating the baseline predictors, the next step is building a

more capable prediction model. The recently held “M4-Competition“, which is an

open competition to evaluate and compare forecasting methods, has underpinned the

continued importance of statistical approaches. In their conclusion paper, Makri-

dakis et al. (2018) remark, that twelve of the seventeen most accurate models were

“combinations of mostly statistical approaches“. In this work, an ARIMA-model
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was chosen as the statistical approach. Many related works looking to improve taxi

demand prediction also include ARIMA to evaluate the accuracy of their new ap-

proach (Ke et al. (2017), Moreira-Matias et al. (2013a), Jiang and Zhang (2018)). A

more in-depth explanation of the mathematical foundation of ARIMA models can

be found in Chapter 2.1.3.
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Figure 19: Visualizations to determine stationarity

In order to use an ARIMA model, the first step is to obtain a stationary series.

Figure 19 shows three visualizations for taxi zone 237, “Upper East Side South“, that

help in determining the stationarity. The first plot shows the actual taxi demand over

two weeks in 2011, where a clear seasonality is present in daily and weekly intervals.

In the second plot a histogram with twenty bins is shown. For a stationary series

one would expect to see a gaussian bell-like shape, which is clearly not the case.

Lastly, the third plot shows the lag plot of the time series, which here appears to

imply a correlation, but certainly not a clear one. It can therefore be assumed, that

the time series is not stationary. Additionally to this kind of visual inspection, an

Augmented Dickey-Fuller unit root test (ADF) is performed. This test evaluates the
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null hypothesis of an ARIMA(p, 1, 0) process against the stationary ARIMA(p +

1, 0, 0) alternative (Dickey and Fuller, 1979). Using the ADF test on the same

region for the year 2011 yields a test statistic of −2.3145 with a p-value of 0.1673.

Therefore the null hypothesis cannot be rejected, and the time series is assumed to

be non-stationary.
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Figure 20: Differencing of the time series for the first two weeks in May

The result of taking the first order difference is shown in Figure 20 and still seems

to follow a daily trend, as well as a weekly trend with lower values during weekends.

As a next step, the first seasonal difference is applied using a lag of 24 for the

daily seasonality. However, this still produces a time series, which seems to follow

a regular pattern. Finally, seasonal differencing with a lag of 168 removes any

obvious seasonality from the data. Continuing the visual evaluation, the histogram

after seasonal differencing looks considerably more bell-like, and the auto-correlation

plot is much clearer. Performing the ADF test leads to a rejection of the null

hypothesis with a test statistic of −9.2426 and a p-value of 1.567× 10−15. Therefore,

this differenced form of the time series can be approximated by an ARIMA model.

Similarly, seasonal differencing leads to a rejection for all 263 taxi zones, with an

average p-value of 1.734× 10−16, making it very likely that this step makes all

individual time series stationary.
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Figure 21: Determining stationarity after seasonal differencing

In order to determine the number of AR and MA terms used for the model, a

first step is to look at autocorrelation and partial autocorrelation function plots,

to determine a general range for the number of terms. In a next step the Akaike

Information Critera (AIC) is used for tuning the hyperparameters and to determine

the best ARIMA model. The AIC, published by Akaike (1998), tries to achieve a

trade-off between the goodness of fit and simplicity of the model. With k being

the number of parameters of the model and L̂ the maximum value of the likelihood

function, the AIC is defined as:

AIC = 2k − 2 ln(L̂) (3.2)

Looking at the autocorrelation plot in Figure 22, the correlation is still significant

with a large number of lags. However, the partial autocorrelation reveals that most

of this can probably be explained by the propagation of the autocorrelation at lag 1.

But since there is a strong local maximum in correlation around the 24 hour mark,

the grid search for optimal hyperparameters will include p values from 20 to 28. For

the number of MA terms it can be assumed they play a less significant role, and will

be checked in the range from 1 to 6. At the end, an ARIMA(24, 0, 4) model was

chosen with an AIC of 25 798.40. It must be noted however, that the high number

of observations seems to overshadow the importance of the number of parameters,

and the AICs are very similar.

For this first evaluation of the predictor, the a separate ARIMA model is trained

on data from 2009-2011 for each regions. Figure 23 again shows predictions for
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Figure 22: ACF and pACF plot for region 237

region 237, Upper East Side South, for the first two days of Max 2012. The model

is clearly able to closely capture and follow the daily trends in the data. However,

with a RMSE of 28.88 on all regions in 2012, it is just barely more accurate than

the canary model. There are two possible explanations for this. First, as the pAFC

plot (Fig. 22) showed, a lot of correlation can be explained with the first lag, which

is also included in the canary model. Second, the canary model is probably more

robust towards outliers, like holidays and weather events, since it uses the average

of the past four weeks, whereas the ARIMA model is strongly dependent on the the

previous week due the seasonal differencing.

3.2.3 Complex Predictor

As described in Section 2.1.4, a neural network autoregression model (NNAR) can

be seen as an extension of the ARIMA approach without the limitations of station-

arity and linearity. Therefore the first step in introducing a neural network based

predictor was to use such a model. The input vector has a length of 28, containing

the previous 24 observations (similar to the ARIMA model) and the 4 previous sea-

sonal observations (similar to the canary model). In order to transform the dataset

into a regression problem, each observation, meaning the amount of taxi rides during
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Figure 23: Predictions of the ARIMA predictor

a particular hour in a particular region is considered the label, to which a 28 di-

mensional input vector is created. The input observations are scaled using standard

scaling, after which they have zero mean and a unit deviation. Program Code 2

shows the preprocessing steps. Note that the parameters used for scaling need to

be preserved, as they are needed to make predictions later.

Code 2 Data preprocessing for the NNAR

1 from sklearn.preprocessing import StandardScaler

2

3 def generate_data(df, region, year):

4 result = pd.DataFrame()

5 for lag in range(1, 25):

6 result['lag-\%d' \% lag] = df[region].shift(lag)[year]

7 for season in range(1,5):

8 result['season-\%d' \% season] = df[region].shift(season * 168)[year]

9 result.dropna(inplace=True)

10

11 scaler = StandardScaler()

12 X = scaler.fit_transform(result.values)

13 y = df[region][year].values

14 return X, y, scaler.get_params()

For the neural network the implementation of the multilayer perceptron regressor

from scikit-learn is used Pedregosa et al. (2011), with the default rectified linear unit
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(ReLU) used as activation function and the Adam optimizer. This implementation

tries to minimize the squared loss until the model stabilizes (tol=4). The model

consists of two hidden layers with 128 and 4 neurons respectively. This model has

5,641 trainable parameters. A separate network is again trained for each region

on the first three years from 2009 until 2011, leading to a sample size of 25,608

observations. Especially looking at the largest 20 regions, the trained model is able

to predict the demand the most accurate so far with a RMSE of 82.56, however is

does not perform much better when looking at the sMAPE. Since the model tries to

minimize the squared loss it presumably fits the demand more closely during periods

of high demand, where the potential penalty could be higher. During periods of lower

demand, like night time, prediction errors impact the relative error sMAPE more

strongly than the absolute error metric RMSE.

In a next step the NNAR model is expanded to include more information that

could impact the taxi demand, and to better leverage the predictive potential of the

neural network. As discussed in Section 2.1.3 the given time series is not stationary,

meaning the value of the series is time-dependent. This fact can be leveraged by

including time-dependent features, namely:

• Day of the week: The main seasonality of this series is weekly, since most

people’s schedule is also weekly. Using “day of the week“ as a categorical

feature allows the model to learn distinct differences between the days. Since

the data is categorical, it is given to the model as a one-hot encoded vector

with length 7.

• Hour: Obviously, the hour of the day impacts the demand very strongly. The

hour of the day is cyclic in nature and should therefore not be used directly,

as the model would have no idea, that 23 immediately precedes 0. Therefore

the sine and cosine with a period of 24
2π

is applied, to map the values hour onto

points on the unit circle.

• Month Similarly, the month of the year is a cyclical feature and transformed

using sine and cosine, with a period of 12
2π

. By including the month the model

might be able to learn some trends with yearly seasonality.

Lastly, instead of treating the regions separately a single model is trained. To
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achieve this another categorical feature is included to denote the region a taxi ride

has started. Since there are 263 taxi zones in NYC, this feature would dramatically

increase the complexity of the model and the number of parameters to be estimated.

The scope of the complex model is therefore limited to the twenty busiest regions

(listed in Appendix A.1), which make up about 60% of the total demand. Overall

this final model therefore has a 59-dimensional input vector. For predictions made

in 2012 this complex model performs the best out of the five tested models with a

RMSE of 60.98 and a sMAPE of 5.46%.

3.2.4 Comparison of Predictors

Predictor RMSE (all) RMSE (Top 20) sMAPE (all) sMAPE (Top 20)

Näıve 49.72 153.89 23.16% 13.66%

Canary 28.97 88.19 24.29% 7.59%

ARIMA 28.88 88.00 24.01% 7.91%

NNAR 27.22 82.56 24.51% 7.38%

Complex – 60.98 – 5.46%

Mean 106.53 358.27 63.89% 27.21%

Table 4: Evaluation of predictors in 2012

The evaluation of the models is summarized in Table 4. It also includes the predictor

“Mean“, whose prediction is always the mean demand of the region in 2011. The

fact that the overall demand of the regions has a tremendous range from 22 to 6.3

million in 2012 heavily impacts the statements that can be derived from the error

metrics. All models have a lower squared error on all regions compared to the Top

20, and at the same time all models have a higher relative error on all regions.

Figure 24 illustrates the large differences in demand, where the region with the 50th

highest demand, Alphabet City, has a demand that is more than 8 times lower,

than the mean demand in the Top 20 regions (573 rides/hour vs. 69 rides/hour).

A low mean demand also implies a low amount of fluctuation in hourly rides. This

is the main factor, why predictions over all regions appear to be more accurate in

terms of the squared error, exemplified by the Mean model. On the other hand,

the different orders of magnitude cause the large difference in the relative error,



3. DESIGN AND IMPLEMENTATION 47

where underestimating the mean by e.g. 30 rides leads to a sMAPE of around 30%

in Alphabet City, the same (absolute) error in the Upper East Side South yields a

sMAPE of less than 3%.
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Figure 24: Average hourly demand in 2012 in the 50 busiest regions

3.3 Drift Detectors

After implementing a set of predictors, the next step is to look at drift detectors.

So far the scope has been purposefully limited to 2012. However, when increasing

the forecast horizon the accuracy will presumably decrease, as the concepts learned

from 2009 to 2011 do not apply fully anymore. The presence of this effect will be

studied closely in Section 4.1. In order to deal with concept drifts efficiently, drift

detectors are needed, that indicate, when a retraining or model switch is necessary.

First, the implementations of the drift detectors from Section 2.2.2 are shown along

with details on their integration into the taxi demand task. Then, strategies for

detecting sudden concept drift, including the novel error intersection approach are

presented.
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3.3.1 Detecting Incremental Concept Drift

As per the first research question “How can we address concept drift in regression

problems in a real-world context?“, two different approaches will be evaluated –

implicit drift detection by periodically retraining, and explicit drift detection, which

triggers a retraining.

Code 3 Python pseudo-code for implicit drift detection

1 model = Model(history, learn_range='3 years')

2

3 for data in get_new_data():

4 model.update(data)

5 prediction = model.predict()

6

7 if model.get_age() > MAX_AGE:

8 model = Model(model.history, learn_range='3 years')

9 yield prediction

An implicit approach to drift detection only consists of a model, and some logic to

trigger a retraining. Code 3 illustrates this approach using python-like pseudo-code.

Once the model is older than a pre-defined threshold, it is replaced by a new model,

that has been trained on the most recent 3 years of data (line 8). This sliding

window approach balances the need of the model to see multiple seasons in order

to learn the concepts effectively with the need to focus on newer data, to learn the

most recent concepts. In Section 4.2 this approach is evaluated using thresholds of

one year, six months, and three months.

3.3.2 Detecting Sudden Concept Drift

As shown in Section 3.1, a potential source of sudden concept drift can be extreme

weather events. The models are purposefully not aware of weather conditions when

making their predictions, therefore weather can be considered a hidden variable. As

part of the second research question “How can we leverage models with different

degrees of complexity to make the prediction more robust?“, multiple approaches

were designed, that leverage models of different complexity.
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Ensemble methods have been widely used in concept drift adaptation methods

(Gama et al., 2014). Usually, these approaches rely on the combination of various

models with an average of the delivered predictions to increase the overall perfor-

mance. However, in this work, the evaluate is focused on approaches which use the

predictions issued by two static models of different complexity to detect drift in the

data and adapt the prediction accordingly. Different complexity here means that

a simple model (Msimple), which is strongly influenced by the most recent demand,

is combined with a more sophisticated, learned model (Mcomplex). In general, the

ensemble should gravitate towards the predictions from Mcomplex, because it suc-

cessfully captures the general demand structure and is therefore able to compute

accurate predictions for the taxi demand in the respective taxi zone. However, dur-

ing times with sudden concept drifts, Mcomplex cannot provide accurate predictions

since the demand patterns clearly deviate from the usual trajectories. In these cases,

the ensemble should prefer Msimple because it can quickly adapt to current changes

in demand.

For the evaluation, a number of possible drift detectors are examined. As Msimple

and Mcomplex the Näıve and NNAR models will be used respectively. The deci-

sion, whether a model switch is performed, can be based on one of the following

approaches:

• Drift Detector Approach (DDA): Using a detector, such as ADWIN or

EDDM a switch will be performed, when a drift is detected, instead of retrain-

ing the model.

• Error Intersection Approach (EIA): Determine model to be used based

on the EWMA of the prediction errors in the last 6 hours.

• Biased (Error) Overlap Approach (BOA): Use the prediction of the sim-

ple model only if its prediction was better in the last three consecutive hours.

Usually, the detectors like EDDM expect an input of TRUE or FALSE, depending

on if the model has made a correct classification. For the regression task at hand, a

prediction is considered to be correct, if one of two conditions is met:

i) |ŷ−y|
y
≤ 20%, i.e. the error is less than 20%

ii) ŷ ≤ 100 ∧ y ≤ 100, i.e. both predicted and real demand are below 100
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The choice of the relative threshold and absolute cut-off is influenced both by the

accuracy of the model and the business requirements. The cut-off at 100 is meant

to mitigate the fact, that the relative error is more sensitive in times of low demand,

e.g. over night. About 10% of all observations in the Top 20 regions are lower than

100. A visualization of how this classification of the predictions plays out for the

NNAR model is shown in Figure 25.
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Figure 25: Weekly percentage of correct predictions from the NNAR model

Code 4 Outline of explicit drift detection in python pseudo-code

1 current_model = ComplexModel()

2 other_model = SimpleModel()

3 detector = Detector()

4

5 for data in get_new_data():

6 current_model.update(data)

7 other_model.update(data)

8 prediction, last_prediction = current_model.predict(), prediction

9 correct = (last_prediction <= 100 and data <= 100) \

10 or abs(prediction - data)/data <= 0.2

11 detector.add_element(correct)

12 if detector.detected_change():

13 current_model, other_model = other_model, current_model

14 detector.reset()

15

16 yield prediction

The python library scikit-multiflow was used (Montiel et al., 2018) for its drift detec-

tor implementations. Scikit-multiflow is a machine learning library inspired by the
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MOA library4 for multi-output/multi-label and stream data. The detectors from the

library are updated by calling the add_element() function of the detector instance.

detected_change() returns TRUE if the drift threshold has been surpassed. The

novel approaches introduced in this work (EIA, BOA) follow the same interface,

but operate on the classification error directly. The warning level that models like

DDM support will not be used. An outline of how the detector is integrated in the

prediction process is shown in Code 4.

Lastly, these approaches are compared to a more traditional ensemble set-up, where

both models are used concurrently, since existing drift handling strategies for re-

gression are usually built this way (see Section 2.2.3). We compute the exponential

weighted moving average (EWMA) of the last 6 prediction errors of both models

respectively and determine the sum of errors. Subsequently, the contribution of each

model is computed as the sum of errors to determine the weights of each model for

the ensemble prediction (e.g. if Mcomplex accounts for 1
3

of the sum of errors, its

weight for the next prediction is 2
3
).

4https://moa.cms.waikato.ac.nz/
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4 Evaluation

So far, the models presented in Section 3.2 have been limited to data from 2009 to

2012, using the first three years for training and the last year for a baseline evalua-

tion. Through this self-imposed limitation it is ensured that the model development

and the choice of hyperparameters happen in isolation from any concept drifts that

occur over time. In a way, the models were developed as if it was the beginning of

2013. In this chapter, we fast-forward to 2018 and evaluate the model performance

over the next six years.

The evaluation of this work is split into three sections. First, the models from

Section 3.2 are evaluated over the remaining six years of the dataset to determine if

a decrease in accuracy takes place, indicating a change in concepts. Next, established

strategies that could be applied to the problem are compared based on their accuracy.

Lastly, multiple strategies for combining a static and a dynamic model are tested,

including the novel error interception approach.

4.1 Presence of Concept Drift

In order to determine the actual presence of concept drift in the taxi demand of New

York City, the predictions of the models from Section 3.2 over the entire available

time range is evaluated. Under the assumption that no concept drift is present, the

accuracy is expected to remain constant or improve over time (see Section 2.2.1).

And in fact, comparing the RMSE of each month from 2012 to 2018 (Figure 26)

seems to hint at a reduction in errors, and therefore an increase in accuracy. How-

ever, the observation that especially the näıve prediction improves dramatically

indicates that another factor is at play. Comparing the progression of the näıve

prediction error with the overall demand (Figure 15) shows striking similarities.

To quantify the correlation between the total number of rides and the prediction

error, the Pearson correlation coefficient can be used. The Pearson correlation co-

efficient is a measure of linear correlation between two variables with a range from

−1 (perfect negative correlation) over 0 (no correlation) to +1 (perfect positive
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Figure 26: Monthly RMSE of all predictors

correlation). It is defined using the covariance cov(x, y) and variance var(x) as:

rxy =
cov(x, y)√

var(x) ·
√

var(y)
(4.1)

The Pearson correlation coefficient between the monthly RMSE of the näıve predic-

tion and the monthly taxi demand is 0.987, indicating a strong positive correlation,

confirming the suspicion from earlier. Therefore, the increase in accuracy can be

almost entirely explained by the overall decrease in taxi demand. Similarly, the cor-

relation can be considered strong for all models except for Complex (see Table 5).

Since the overall decrease in demand is so high (173.8 million in 2012; 111.7 million

in 2017), the squared error by itself cannot be relied upon to evaluate the accuracy

over time.

Model ARIMA NNAR Canary Complex Näıve

RMSE 0.717950 0.619591 0.645408 0.433092 0.987329

sMAPE -0.440448 -0.325020 -0.215905 -0.855102 -0.147284

Table 5: Pearson correlation coefficients between monthly errors and overall demand

Instead, the sMAPE can give a better overall impression on the accuracy evolution

over time, since the correlation is (for the most part) much weaker. Figure 27

shows how the monthly sMAPE develops over time. The näıve baseline model

remains relatively constant, while all other models decrease in accuracy. Especially

the complex model is affected, increasing the yearly sMAPE from 5.46% to 8.57%.
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Interestingly, the sMAPE of the ARIMA model remains fairly constant over the first

four years, only to then increase rapidly from 8.17% in 2015 to 9.45% in 2018. It can

therefore be concluded that an incremental concept drift is taking place, affecting

the accuracy of all models, but especially those with increasing complexity.
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Figure 27: Monthly and daily sMAPE of all predictors

Looking at the sMAPE with a daily resolution, another pattern emerges. While the

error of the näıve predictor remains fairly constant, the error of the complex model

contains many spikes, of which six clearly surpass the näıve prediction. The spike

at the end of 2012 for example can be explained by Hurricane Sandy, which reached

New York on October 29th; the largest spike at the beginning of 2016 coincides with

a blizzard hitting the city. These short periods can be considered a sudden concept

drift instead of outliers since they are not a “once-off random deviation or anomaly“

(Gama et al., 2014), but instead can be explained in hindsight.

As noted by Tsymbal et al. (2008), a common real-world case is that concept drift

occurs only locally within the dataset. Given the natural segmentation of the taxi

demand into regions, a next step is to evaluate regional differences in the amount
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of concept drift. Figure 28 shows the increase in sMAPE over time, averaged for

the three regions with the highest and lowest absolute change from 2012 to 2018.

Within this dataset it can be assumed, that all regions show some form of concept

drift, but it is important to note, that there are considerable differences in severity,

even within only the Top 20 zones.
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Figure 28: Quarterly sMAPE of the zones with the highest and lowest change in

accuracy

In this first section of the evaluation, three key conclusions were drawn: First,

because the strong downward trend of overall taxi demand, the sMAPE needs to

be considered when comparing the accuracy of different time frames. Second, the

sMAPE of all models increases over time except for the näıve model, indicating

that concept drift is in fact present. Measures to remain accurate predictions are

evaluated in the next section. Third, short spikes in the mean error can be considered

sudden concept drift, often caused by unusual weather or holidays. The novel error

intersection approach that counteracts this effect is evaluated in Section 4.3

4.2 Handling of Incremental Concept Drift

In this section, implicit approaches to handle incremental concept drift are evalu-

ated. As discussed in Section 2.2.1, an implicit approach does not actually determine

whether a shift has occurred, but instead regularly updates the model independently.

Therefore it might happen, that the retraining did not actually improve the perfor-

mance, and was basically a waste of time. Additionally, depending on the learning
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algorithm, the new model might behave differently in certain edge-cases, and the

experience from using the old model cannot help anymore (Dunning and Friedman,

2017). Nonetheless, evaluating the implicit approach can help to determine, whether

the increase in error is caused by a shift in the dataset, which the model can capture

and learn, or if there are unknown variables at play, that the model does not know

about.

2012 2013 2014 2015 2016 2017 2018

0.05

0.06

0.07

0.08

0.09

M
on

th
ly

sM
A

P
E

Mupdate

Mstatic

Figure 29: Monthly sMAPE comparing Mupdate with Mstatic

For this evaluation the model Mupdate is updated yearly, and trained each time using

the previous 3 years of data. This means that the forecast for 2013 is performed

with a model trained on data from 2010-2012, the forecast for 2014 is issued by a

model trained on data from 2011-2013. Therefore both approaches had an equal

amount of data available for training. The results are shown in Figure 29 and show

that Mupdate has a lower error in every month after 2012, except for January 2016,

where a blizzard hit the city that left a city-record 70cm of snowfall, impacting the

daily life for multiple days. This sudden concept drift was not captured by either

model, and impacted the mean error for that month.

In Table 6 the yearly errors are compared. Similarly to the percentage error, the

squared error improves every year, with the gap increasing every year. Additionally,

the p-value of the two-sided Diebold-Mariano Test (DM-Test) is shown. For every

year the test has a very low p-value, leading to a rejection of the null hypothesis and

the conclusion that the forecasts actually have a statistically significant difference in

accuracy. Overall, the sMAPE was improved from 6.54% to 6.00%, and the RMSE
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from 54.38 to 50.48. Since predictions on the same regions over the same time period

are evaluated, both metrics can be used.

sMAPE RMSE

Year Mstatic Mupdate Mstatic Mupdate p-value (DM-Test)

2012 5.46% 5.46% 54.54 54.54 1.64× 10−1

2013 5.67% 5.56% 56.61 55.06 7.29× 10−23

2014 5.77% 5.50% 55.57 52.93 5.55× 10−31

2015 6.35% 6.00% 54.19 51.14 2.42× 10−39

2016 6.95% 6.38% 53.21 48.04 3.86× 10−45

2017 8.01% 6.80% 52.88 44.87 9.95× 10−118

2018 8.57% 6.81% 52.90 42.99 7.04× 10−58

Overall 6.54% 6.00% 54.38 50.48 9.15× 10−294

Table 6: Yearly evaluation of Mupdate and Mstatic

Furthermore, different update intervals were examined. Table 7 compares the pre-

diction errors of three intervals: Yearly - updating on January 1st, Half-yearly -

additionally updating on July 1st, and Quarterly - additionally updating on April

1st and October 1st. For each update the model is retrained using the most recent

three years of data at that time. In general the evaluation indicates, that updating

too frequently can also have a negative impact, as the quarterly updated model per-

forms consistently worse. It seems like choosing a biyearly update strategy achieves

a balance between drift adaptation and unnecessary computations.

In conclusion the data shows, that a time-triggered retraining of the model does im-

prove its predictive performance in a way, that is statistically significant. Given the

consistency of improvement, retraining and model replacement could be automated

and should not need any further manual input.

4.3 Ensemble Methods for Concept Drift

In this section, the strategies for handling sudden concept drift as introduced in

Section 3.3.2 are evaluated. Table 8 shows the results for the overall prediction

performance of the different approaches on the dataset from 2012 to 2018. The
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sMAPE RMSE

Year Quarterly Half-yearly Yearly Quarterly Half-yearly Yearly

2012 5.45% 5.48% 5.46% 54.28 54.39 54.54

2013 5.60% 5.60% 5.56% 55.19 54.99 55.06

2014 5.59% 5.53% 5.50% 53.20 52.77 52.93

2015 6.09% 5.98% 6.00% 50.69 50.54 51.14

2016 6.54% 6.34% 6.38% 47.82 47.61 48.04

2017 6.70% 6.73% 6.80% 44.45 44.28 44.87

2018 7.23% 6.81% 6.81% 44.84 42.99 42.99

Overall 6.02% 6.01% 6.00% 50.92 50.17 50.48

Table 7: Evaluating different update intervals

first part shows the baseline approaches Msimple, Mcomplex and Ensemble. Msimple is

the näıve predictor introduced in Section 3.2.1, Mcomplex the expanded NNAR from

Section 3.2.3, and Ensemble calculates a weighted sum of both models based on

the exponentially-weighted error of a sliding six-hour window. This ensemble does

not perform better than Mcomplex does on its own. Apparently the predictions from

Msimple are so far off, that they should not be included constantly. The second part

of the table shows the drift detector approaches (DDA), where the model switch

decision is based on a standard drift detector (see Section 3.3.2). Their accuracy

is much more similar to Msimple, indicating that it was active for most of the pre-

dictions. Closer analysis showed, that the detectors were much less likely to be

triggered when the simple model was active, since its error does not fluctuate as

strongly (see Figure 27). Finally, both BOA (Biased Error Overlap Approach) and

EIA (Error Intersection Approach) are able to improve on the accuracy of Mcomplex.

The absolute difference in RMSE between them and Mcomplex appears to be rather

small. However, it has to be considered that over 1.3 million predictions are made.

Using the DM-Test between the predictions of BOA and Mcomplex yields a p-value

of 1.89× 10−7, therefore the difference is statistically significant. BOA and EIA on

the other hand, do not differ significantly (p-value: 0.183). For simplicity, further

analysis will be focused on EIA.

The effectiveness of EIA is illustrated in Figure 30, which depicts the demand predic-
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Approach # Switches sMAPE RMSE

Msimple n/a 13.80% 115.871

Mcomplex n/a 6.00% 50.478

Ensemble n/a 6.75% 58.381

DDAPH 1,811 9.79% 82.176

DDAADWIN 70 11.64% 97.657

DDAEDDM 30 13.47% 112.783

BOA 397 5.99% 50.391

EIA 365 5.98% 50.370

Table 8: Comparison of sudden drift detectors

tions during the blizzard in 2015 (see Figure 17), as an example for sudden concept

drift. At the beginning, EIA (red dashed line) always chooses Mcomplex (blue line),

hence they are right on top of each other. However, at 4pm on January 26th (marked

by a black vertical line), the approach switches to Msimple (orange line), which can

quickly adapt to the unusual demand pattern. Mcomplex clearly fails to predict this

behavior correctly (e.g., peak at around 5am on 01-27).
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Figure 30: Predictions of EIA during the blizzard on 2015-01-27
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Additionally, analyzing the predictive performance in those hours where Msimple is

chosen by EIA (706 out of 56,951 hourly forecasts in total) shows that the approach

improves prediction performance on average by 8.4% (RMSE EIA: 75.31 vs RMSE

Mcomplex: 82.21). Next, the behaviour of EIA is examined at a daily resolution. We

analyze for which days Msimple is applied the most. This way, the days with most

significant concept drifts can be identified in hindsight. Table 9 shows an excerpt

of days with a frequent use of Msimple for a prediction as well as the correspond-

ing special events (drift causes) on that day. In most cases, drift is triggered by

unusual weather events or public holidays. The third column depicts the relative

improvement in RMSE of EIA compared to predictions by Mcomplex alone. The full

table can be found in Appendix A.2. While the approach improves the prediction

overall, there are exceptions. For example, on Christmas Day 2014 71% of the pre-

dictions came from Msimple, but the error on that day was actually increased by 10%

compared to Mcomplex alone.

Date Predictions by Msimple RMSE Improvement Drift Cause

2012-07-04 58.33% 7.57% 4th of July

2012-10-29 91.67% 31.72% Hurricane Sandy

2012-10-30 91.67% 21.89% Hurricane Sandy

2012-12-25 70.83% 5.66% Christmas Day

. . . . . . . . . . . .

2014-12-25 71.04% -10.25% Christmas Day

. . . . . . . . . . . .

Table 9: Excerpt of days with frequent use of Msimple for a prediction

Lastly, the effect EIA has on each region is examined. Table 10 depicts these ef-

fects. In 13 of the 20 regions the RMSE was improved, 9 of which were improved

significantly, according to the DM-Test. Only in one region, Upper East Side South,

the approach actually worsened the prediction significantly, changing the RMSE

from 61.11 to 61.24. Overall, the analysis emphasizes the importance of evaluating

concept drift in sub-sections of the data, as concept drift might occur only locally.

In conclusion, the proposed error intersection approach is capable of detecting sud-

den concept drifts and switch the models accordingly. Most of the time, in most
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Significant Not Significant

Improvement
48, 68, 79, 90, 138,

163, 164, 186, 249
107, 161, 162, 170

No Improvement 237
141, 142, 230, 234,

236, 239

Table 10: Significance of Improvements for each Region with 95% Confidence

of the regions, the predictive performance can be improved. While, there are some

small exceptions, the overall accuracy is improved significantly.
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5 Conclusion

In this thesis, the effects of concept drift on supervised regression tasks have been

analyzed. Drift handling strategies for both sudden and incremental concept drift

were presented and evaluated on the example of taxi demand in New York City,

while introducing the novel “error intersection approach“ (EIA).

The NYC taxi dataset is especially suited for answering the first research question,

“How can we address concept drift in regression problems in a real-world context?“.

The assumption was made, that there might be two forms of concept drift in the

dataset. First, long-term change due to overall shifts in the city dynamics. Second,

sudden drift during special events or unusual weather occurrences. For this thesis

the task was to predict the demand in each region for the next hour. Analyzing the

history and current state of research in the domain of time series prediction lead to

the development of multiple candidate models, with differing degrees of complexity.

The evaluation of these models showed, that all of them predicted significantly

worse over time, indicating that concept drift is in fact present in the dataset.

While analyzing the long-time trend, interpretation of the error metrics proved to

be surprisingly challenging. The distribution and overall level of demand has to be

taken into account, especially considering the 35% decrease in yellow taxi ridership

from 2012 to 2017 and the imbalanced distribution of demand over taxi zones.

To adequately capture the development in accuracy, both relative and absolute

measures have to be taken into account.

In order to mitigate the effects of long-term incremental concept drift, multiple

update intervals for implicit drift handling were tested. The comparison showed that

more frequent model updates do not guarantee an improvement, as the quarterly

updating model performed worst. Further analysis can be done to determine ideal

retraining intervals to reduce the amount of unnecessary computations.

The second research question, “How can we leverage models with different degrees

of complexity to make the prediction more robust?“, lead to the development of

EIA. This approach, in its core, depicts a strategy to switch between the applica-

tion of simple and complex prediction models which is designed to deliver superior

performance results in real-world data sets prone to concepts drifts. The hypothesis



5. CONCLUSION 63

being, that the drift detector can leverage the individual strengths of each model,

switching to the simpler model if a sudden drift occurs and switching back to the

complex model for typical situations. On the NYC taxi dataset many events can

be classified as concept drift, since the models tested are not aware of e.g. holidays

or extreme weather events like blizzards. The EIA was compared against typical

predictive models for regression tasks and it was shown to outperform all regarded

baselines significantly.

However, the results presented in this thesis have limitations that require further

research. Compared to state-of-the-art approaches in the domain of taxi demand

prediction, the predictors in the EIA-ensemble are not very complex. Deep learning

approaches, like FCL-Net or ST-ResNet, might be less affected by concept drift,

as they learn more complex relationships between the taxi zones. But as these

models are only evaluated on shorter test periods (2 and 6 months respectively),

a comprehensive long-term evaluation of these models is needed. Still, the main

limitation of the EIA approach is that true value for a delivered prediction need to

be acquired afterwards, which might not be the possible in all applications. However,

this limitation also holds true for established drift detection methods.

The work in this thesis underlines the benefits of ensemble-based approaches when

working with real-world data. In an architecture like the Rendezvous Architecture,

loosely coupled ensembles fit right in and can be incorporated easily. While the core

idea of switching between models falls in line with the notion of a rendezvous server,

more investigations are necessary to determine the modifications needed to also

enable retraining. In future work the complexity of EIA itself could be increased,

by either combining multiple drift detectors or by leveraging more than two models.
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A Appendix

A.1 List of Twenty Busiest Taxi Zones

LocationID Borough Zone Total # of Rides

48 Manhattan Clinton East 45.759.269

68 Manhattan East Chelsea 36.410.981

79 Manhattan East Village 48.118.532

90 Manhattan Flatiron 28.982.747

107 Manhattan Gramercy 38.367.834

138 Queens LaGuardia Airport 31.033.642

141 Manhattan Lenox Hill West 34.172.089

142 Manhattan Lincoln Square East 41.102.133

161 Manhattan Midtown Center 51.588.779

162 Manhattan Midtown East 48.032.978

163 Manhattan Midtown North 38.123.963

164 Manhattan Midtown South 34.286.742

170 Manhattan Murray Hill 47.204.649

186 Manhattan Penn Station/Madison Sq West 44.838.684

230 Manhattan Times Sq/Theatre District 49.046.576

234 Manhattan Union Sq 47.167.751

236 Manhattan Upper East Side North 48.057.999

237 Manhattan Upper East Side South 53.724.226

239 Manhattan Upper West Side South 34.657.551

249 Manhattan West Village 32.576.028
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A.2 List of Days, Where Msimple Is Used Most Often

Date Predictions by Msimple RMSE Improvement Drift Cause

2012-07-04 58.33% 7.57% 4th of July

2012-10-29 91.67% 31.72% Hurricane Sandy

2012-10-30 91.67% 21.89% Hurricane Sandy

2012-12-25 70.83% 5.66% Christmas Day

2013-01-01 62.50% 7.75% New Years Eve

2013-07-04 58.33% 0.43% 4th of July

2013-12-25 46.04% -16.28% Christmas Day

2014-01-22 45.83% -21.59% Snow Storm

2014-12-25 71.04% -10.25% Christmas Day

2015-01-27 83.33% 13.94% Blizzard

2015-12-25 66.66% -0.75% Christmas Day

2016-01-23 66.66% 37.52% Blizzard

2016-01-24 100.00% 20.20% Blizzard

2016-01-25 45.83% -1.44% Blizzard

2016-07-04 50.20% -2.74% 4th of July

2016-12-25 62.50% -1.20% Christmas Day

2016-12-26 62.50% 0.76% Christmas

2017-03-14 71.04% 48.46% Blizzard

2017-07-04 87.50% 23.43% 4th of July

2017-12-25 58.33% -2.97% Christmas Day

2018-01-04 62.50% 6.61% Blizzard

2018-03-21 58.54% 7.17% Blizzard
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