
Yocto on the Edge
Unusual challenges when
building not so embedded
systems

Anna-Lena Marx
Yocto Project Dev Day
September 19th, 2024 · Vienna

Anna-Lena Marx

Embedded Systems Developer

● since 2015 with inovex
● has a Master’s degree in Embedded Systems
● studies Electrical Engineering as a hobby

Main Topics

● Embedded Systems
● Yocto Linux
● Linux Kernel
● AOSP/AAOS
● IoT

2

Anna-Lena Marx

marx.engineer

anna-lena.marx
@inovex.de

http://www.linkedin.com/in/anna-lena-marx-embedded
https://marx.engineer
mailto:anna-lena.marx@inovex.de
mailto:anna-lena.marx@inovex.de

 work based on kirkstone

3

4

 bugs caused by my distraction ninja

About the project and requirements

5

6

SaferCities is a New Zealand based company that provides
independent subject matter expertise consulting around CCTV and
related systems, as well as the vGRID SaferCity Platform.
vGRID enables CCTV & ANPR asset owners to share with one another
and law enforcement, regardless of CCTV system (or VMS), network
configuration or brand.
vGRID is used across the whole of New Zealand by New Zealand
Police, and is used by other Police forces in Australia, and is
undergoing trials in the USA.

For more information, please see https://vgrid.io or https://safercities.com

https://vgrid.io
https://safercities.com

7

switching to …

… to get
full platform control
● containers and system
● updates

fulfill high security requirements
● user management
● system integrity
● encrypted data

Working with x86
Workflows, Debugging, Provisioning

8

9

● interfaces like UART, JTAG, …
directly accessible

● often SD cards for development
and eMMC for production

● e.g. jumpers and/or manufacturer
tools needed to flash eMMC

 -> diverse, but known tooling

● mostly no accessible debug
interfaces -> use screen and
keyboard, screen capture tools, …

● boots from USB for development,
SSD/NVMe for production

● create a “self-installing image” from a
USB drive

 -> less diverse but unknown and “limited”

10

Provisioning - Self-installing Yocto from a USB drive

https://www.thegoodpenguin.co.uk/blog/self-installing-yocto-image-from-a-usb-drive/

https://www.thegoodpenguin.co.uk/blog/self-installing-yocto-image-from-a-usb-drive/

Usual workflow

11

IMGDEPLOYDIR
${WORKDIR}/deploy-${PN}-image-complete

DEPLOY_DIR_IMAGE
${DEPLOY_DIR}/images/${MACHINE}/

process and put
rootfs together

ready to be
deployed

parts needed in
boot partition

rootfs
-> used by WIC rootfs
 plugin

IMAGE_BOOT_FILES
-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

Installer

12

IMGDEPLOYDIR
${WORKDIR}/deploy-${PN}-image-complete

DEPLOY_DIR_IMAGE
${DEPLOY_DIR}/images/${MACHINE}/

IMAGE_BOOT_FILES
-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

kernel and rootfs from

intermediate location

initramfs with

init-install-efi.sh
rootfs
-> used by WIC rootfs
 plugin

Installer

13

IMGDEPLOYDIR
${WORKDIR}/deploy-${PN}-image-complete

DEPLOY_DIR_IMAGE
${DEPLOY_DIR}/images/${MACHINE}/

IMAGE_BOOT_FILES
-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

kernel and rootfs from

intermediate location

initramfs with

init-install-efi.sh

Installer

IMAGE_BOOT_FILES
-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

initramfs with

init-install-efi.sh
rootfs
-> used by WIC rootfs
 plugin

Installer

14

IMGDEPLOYDIR
${WORKDIR}/deploy-${PN}-image-complete

DEPLOY_DIR_IMAGE
${DEPLOY_DIR}/images/${MACHINE}/

IMAGE_BOOT_FILES
-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

kernel and rootfs from

intermediate location

initramfs with

init-install-efi.sh
rootfs
-> used by WIC rootfs
 plugin

15

bootfs=${device}${part_prefix}1
rootfs=${device}${part_prefix}2
swap=${device}${part_prefix}3

echo "*****************"
echo "Boot partition size: $boot_size MB ($bootfs)"
echo "Rootfs partition size: $rootfs_size MB ($rootfs)"
echo "Swap partition size: $swap_size MB ($swap)"
echo "*****************"
echo "Deleting partition table on ${device} ..."
dd if=/dev/zero of=${device} bs=512 count=35

echo "Creating new partition table on ${device} ..."
parted ${device} mklabel gpt

echo "Creating boot partition on $bootfs"
parted ${device} mkpart boot fat32 0% $boot_size
parted ${device} set 1 boot on

echo "Creating rootfs partition on $rootfs"
parted ${device} mkpart root ext4 $rootfs_start $rootfs_end

echo "Creating swap partition on $swap"
parted ${device} mkpart swap linux-swap $swap_start 100%

parted ${device} print

init-install-efi.sh

multiconfig approach

16

IMGDEPLOYDIR DEPLOY_DIR_IMAGE

IMAGE_BOOT_FILES

rootfs

IMGDEPLOYDIR DEPLOY_DIR_IMAGE

IMAGE_BOOT_FILES

rootfs

Actual image

usable without installer

Installer

initramfs with

init-install-efi-mender.sh

mc:vgrid-image

mc:installer

mender-enabled-image.uefiimg.bz2

17

SUMMARY = "Build the actual images as an inner payload"

PACKAGE_ARCH = "${MACHINE_ARCH}"
PACKAGES = "${PN}"

INHIBIT_DEFAULT_DEPS = "1"

Variables to control where images are found: the multiconfig name, and the deploy dir.
CONTAINER_PACKAGE_MC ?= "vgrid-images"

CONTAINER_PACKAGE_DEPLOY_DIR = "${TOPDIR}/tmp-vgrid-images-glibc/deploy/images/intel-corei7-64"

do_install[mcdepends] += "mc:vgrid-installer:vgrid-images:vg-image-provisioning:do_image_complete"
do_install[mcdepends] += "mc:vgrid-installer:vgrid-images:vg-image-update:do_image_complete"

do_install() {
install ${CONTAINER_PACKAGE_DEPLOY_DIR}/${IMAGE}.uefiimg.bz2 ${D}/${BASE}.uefiimg.bz2

}

FILES:${PN} = "/${BASE}.uefiimg.bz2"

we don't need those!
do_configure[noexec] = "1"
do_compile[noexec] = "1"
deltask do_populate_sysroot

vgrid-images-buildtask.bb

18

SUMMARY = "Minimal installer image"

require recipes-core/images/core-image-base.bb

PACKAGE_INSTALL:append = " vgrid-images-buildtask"

vgrid-image-installer.bb

header:
 version: 16
 includes:
 - kas/common-intel.yml

distro: vgrid-distro-installer
target: mc:vgrid-installer:vg-image-installer

local_conf_header:
 usb-provisioning: |
 BBMULTICONFIG = "vgrid-images vgrid-installer"

kas-installer.yml

IMAGE_BOOT_FILES:append = " \
 ${IMAGE_ROOTFS}/${PAYLOAD_IMG_NAME}.uefiimg.bz2 \
"

vgrid-distro-installer.bb

Login Users
with read-only rootfs and A/B updates
- but sound and secure

19

 Requirements & Challenges

20

user who is allowed to
log in

A/B partitioning schema
for OTA updates

read-only rootfs

dm-verity

secure password per device
or

enforce password change

/etc/passwd needs to be
writable

general security

create volatile-bind for /etc
and use encrypted partition as

a target

21

We need to overlay /etc for writeable system configurations,
e.g. changing the user's password.
VOLATILE_BINDS:append = " \
 /data/config /etc\n \
"

We need to make sure the target directories exist otherwise
the bind-mount will fail
FILES:${PN} += " \
 /data/config \
"

do_install:append() {
 install -d ${D}/data/config
}

volatile-binds.bb

Other possible implementations:
● overlayfs.bbclass
● overlayfs-etc.bbclass

OverlayFS and its use in Yocto Project

https://static.sched.com/hosted_files/osseu2022/70/OverlayFS%20in%20Yocto.%20Vyacheslav%20Yurkov.pdf?_gl=1*1x6bm38*_gcl_au*NTQ3Nzg3MjkyLjE3MjU4OTk4OTQ.*FPAU*NTQ3Nzg3MjkyLjE3MjU4OTk4OTQ

22

ROOTFS_POSTPROCESS_COMMAND +=
'${@bb.utils.contains_any('VG_FEATURES', 'vg-expire-password', 'set_password_expiry; ', '',d)}'

set_password_expiry() {
 export PSEUDO="${FAKEROOTENV} ${STAGING_DIR_NATIVE}${bindir}/pseudo"
 flock -x ${IMAGE_ROOTFS}${sysconfdir} -c "$PSEUDO chage -R ${IMAGE_ROOTFS} -d0 ${AUTHORIZED_USER_NAME}"
}

vgrid-image.bb

Encrypted data partition
Utilizing LUKS2, TPM2 and systemd

23

24

Encrypt on runtime

systemd service

- triggers encryption

- runs before data.mount

encryption script

- write LUKS header on

 existing partition
 cryptsetup reencrypt --encrypt

- actual online encryption

 cryptsetup reencrypt encryption script

- link TPM to LUKS device

 systemd-cryptenroll

25

Prepare in image

- UUID=<data-uuid> /data ext4 rw 0 2

+ /dev/mapper/data /data ext4 rw 0 2

fstab

data UUID=<data-uuid> none tpm2-device-auto,tpm2-pcrs=7

crypttab

fstab is modified by Mender in a
ROOTFS_POSTPROCESS_COMMAND !

At early boot and when the system manager
configuration is reloaded, /etc/crypttab is

translated into systemd-cryptsetup@.service
units by systemd-cryptsetup-generator(8).

https://www.freedesktop.org/software/systemd/man/latest/systemd-cryptsetup-generator.html#

Dealing with Limits
Using KAS to patch .bbclass, .inc or similar
“unpatchable” files in Yocto

26

27

diff --git a/meta-mender-core/classes/mender-setup-image.inc b/meta-mender-core/classes/mender-...
index 85383d27..3fc4097a 100644
--- a/meta-mender-core/classes/mender-setup-image.inc
+++ b/meta-mender-core/classes/mender-setup-image.inc
@@ -58,7 +58,7 @@ mender_update_fstab_file() {
 fi

 mkdir -p ${IMAGE_ROOTFS}/data
- printf "%-20s %-20s %-10s %-21s %-2s %s\n" ${tmpDataPart} /data ${MENDER_DATA_PART_FSTYPE} …
+ printf "%-20s %-20s %-10s %-21s %-2s %s\n" ${MENDER_DATA_PART_CRYPT} /data ${MENDER_DATA_PA…

meta-vgrid/patches/meta-mender/mender-use-mapper-device-for-data.patch

 meta-mender:
 layers:
 meta-mender-core:
 branch: kirkstone
 url: https://github.com/mendersoftware/meta-mender.git
 path: sources/meta-mender
 patches:
 encrypted-data:
 repo: meta-vgrid
 path: patches/meta-mender/mender-use-mapper-device-for-data.patch

kas/common.yml

Why and when am I using this mechanism?

28

● patching files where .bbappend is not possible, e.g.
.bbclass, .inc, ROOTFS_POSTPROCESS_COMMAND functions, …

● when copying the file to our own layer does not make sense, e.g.
○ just a one-line change
○ want to get updates and see if the original file changes

● when copying the file to our own layer does not work, e.g.
○ an e.g. .inc file that’s already used in the original layer
○ priority issues

 -> not Yocto-by-book, but a really clean and maintainable way to work around limits
 -> no replacement for .bbappend!

Encrypted data partition
Utilizing LUKS2, TPM2 and systemd

29

30

PACKAGECONFIG:append:pn-cryptsetup = " cryptsetup veritysetup udev luks2"
PACKAGECONFIG:append:pn-systemd = " cryptsetup tpm2"

vgrid-distro.conf

do_install:append() {
 install -d ${D}${libdir}/cryptsetup
 install -m 0755 ${WORKDIR}/build/libcryptsetup-token-systemd-tpm2.so \

 ${D}${libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so
}

FILES:${PN}:append = " \
 ${base_libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \
 ${libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \
"

systemd_%.bbappend

Fixed in scarthgap!

echo "Generating a new key..."
/usr/bin/openssl rand -base64 44 > ${tmp_key_file}

echo "Writing encryption headers..."
/bin/cat "${tmp_key_file}" | /usr/sbin/cryptsetup reencrypt --encrypt --type luks2 --key-slot=1 \
--batch-mode --init-only --reduce-device-size 32M --offset="${OFFSET}" "${data_dev}" data

Enrolling the TPM2 integration only works after the online encryption step is finished.
echo "Encrypting the data partition..."
/bin/cat ${tmp_key_file} | /usr/sbin/cryptsetup reencrypt --offset="${OFFSET}" "${data_dev}"

echo "Deploying TPM2 keys..."
export PASSWORD="$(cat ${tmp_key_file})"
/usr/bin/systemd-cryptenroll --tpm2-device=auto --tpm2-pcrs=7 "${data_dev}"
unset PASSWORD

31

encrypt-data.sh

secure-boot
and Mender

32

One well-known
implementation instead of x
vendor specific with ARM -

can’t be that hard!

33

● grubx64.efi.p7b
● grub.cfg.p7b
● boot-menu.inc.p7b
● bzImage.p7b

boot into UEFI with
secure boot enabled

/boot/efi

load boot files
from /boot/efi

check signatures

boot kernel

error screen

meta-secure-core/meta-efi-secure-boot

● grub-efi, efitools, mokutil, shim, …
● patches for GRUB
● signing tasks for kernel, bootloader, …
● TPM integration for keys and certificates
● automated certificate provisioning boot step

… but all examples and documentation utilize an initramfs!

Best read for kirkstone: Discussion on Mender and secure boot

34

https://github.com/Wind-River/meta-secure-core/tree/kirkstone/meta-efi-secure-boot
https://hub.mender.io/t/mender-and-efi-secure-boot-on-intel-corei7-64/4862

35

MACHINE_FEATURES:append = " efi tpm2"
DISTRO_FEATURES:append = " \
 security \
 tpm2 \
 efi-secure-boot \
"

MOK_SB = ""
SIGNING_MODEL = "user"

vgrid-distro.conf

IMAGE_INSTALL:append = " \
 tpm2-tools \
 libtss2-tcti-device \
 efitools \
 seloader \
 update-signed-kernel-state-script \
"

Deploy kernel and signature to boot partition.
They cannot be verified on rootfs partition.
#
Mender processes IMAGE_BOOT_FILES and has some issues with multiline parsing
IMAGE_BOOT_FILES:append = " ${KERNEL_IMAGETYPE} ${KERNEL_IMAGETYPE}${SB_FILE_EXT}"

vgrid-image.bb

36

…

mender_kernel_path=""

if ["${drop_to_grub_prompt}" = "no"];

then

 search --no-floppy --label --set=root boot

 if linux "${mender_kernel_path}/${kernel_imagetype}" root="${mender_kernel_root}" ${bootargs};

 then

 if test -n "${initrd_imagetype}" -a test -e "${mender_kernel_path}/${initrd_imagetype}";

 then

 initrd "${mender_kernel_path}/${initrd_imagetype}"

 fi

 maybe_pause "Pausing before booting."

 boot

 fi

 maybe_pause "Pausing after failed boot."

fi

overwritten

90_mender_boot_grub.cfg

It works now, but …

the kernel image within the boot partition is NOT managed by Mender!

● use Mender state scripts to copy the kernel to /boot/efi
○ executed as Enter or Leave action to the Mender states
○ ArtifactInstall_Leave_05_kernel_update

○ ArtifactRollback_Leave_05_kernel_rollback

37

And in the end?
We have built a hopefully rock-solid and secure system,

with clean, understandable and maintainable code.

And a lot time spent into bringing pieces together!

38

Thank you!
Time for questions.

39

inovex is an IT project
center driven by innovation
and quality, focusing its
services on ‘Digital
Transformation’.

● founded in 1999
● 500+ employees
● 8 offices across

Germany

www.inovex.de

Anna-Lena Marx
Embedded Systems Developer

anna-lena.marx@inovex.de

https://vgrid.io
https://safercities.com

mailto:anna-lena.marx@inovex.de
https://vgrid.io
https://safercities.com

