Yocto on the Edge

Unusual challenges when
building not so embedded
systems

Anna-Lena Marx
Yocto Project Dev Day
September 19th, 2024 - Vienna

\ g

inovex

Anna-Lena Marx

Embedded Systems Developer

e since 2015 with inovex
e has a Master’s degree in Embedded Systems
e studies Electrical Engineering as a hobby

Main Topics

Anna-Lena Marx

e Embedded Systems
@ anna-lena.marx e Yocto Linux
@inovex.de e Linux Kernel
. e AOSP/AAOS
marx.engineer
o ol

’ inovex

http://www.linkedin.com/in/anna-lena-marx-embedded
https://marx.engineer
mailto:anna-lena.marx@inovex.de
mailto:anna-lena.marx@inovex.de

work based on kirkstone

v inovex

bugs caused by my d1stract1on ninja

’ inovex

GRID

by (SaferCities)

About the project and requirements

v inovex

SaferCities is a New Zealand based company that provides
independent subject matter expertise consulting around CCTV and
related systems, as well as the vGRID SaferCity Platform.

VGRID enables CCTV & ANPR asset owners to share with one another
and law enforcement, regardless of CCTV system (or VMS), network
configuration or brand.

VGRID is used across the whole of New Zealand by New Zealand
Police, and is used by other Police forces in Australia, and is
undergoing trials in the USA.

For more information, please see https://varid.io or https:/safercities.com

’ inovex

https://vgrid.io
https://safercities.com

“ balena SWitching 1o __

(X 1] to get

full platform control m

e containers and system . . .

e updates
OCTO -
fulfill high security requirements

® user management P R O j E C T

e system integrity
e encrypted data

v

inovex

Working with x86

Workflows, Debugging, Provisioning

V.
1novex

e interfaces like UART, JTAG, ... e mostly no accessible debug
directly accessible interfaces -> use screen and
keyboard, screen capture tools, ...
e often SD cards for development
and eMMC for production e boots from USB for development,
SSD/NVMe for production
e e.g.jumpers and/or manufacturer
tools needed to flash eMMC e create a “self-installing image” from a
USB drive

-> diverse, but known tooling
-> less diverse but unknown and “limited”

’ inovex

Provisioning - Self-installing Yocto from a USB drive

Updated on February 16, 2023 / Bennie Affleck

Self-installing Yocto Image from a
USB drive

Tech Blog | Yocto

We are all familiar with the process of installing a desktop operating system onto a PC;
simply insert the installation media, typically a USB stick, and boot the device. A minimal
version of the OS then runs to perform the process of partitioning discs and installing the
full OS.

Yocto also has the ability to generate a self-installing image, just like a desktop operating
system. For an embedded system that can boot from a USB drive this gives some significant

advantages:

https://www.thegoodpenguin.co.uk/blog/self-installing-yocto-image-from-a-usb-drive/ ’
10 inovex

https://www.thegoodpenguin.co.uk/blog/self-installing-yocto-image-from-a-usb-drive/

Usual workflow

process and put
rootfs together

O
0324
IMGDEPLOYDIR

${WORKDIR}/deploy-${PN}-image-complete

1

parts needed in)
boot partition

IMAGE_BOOT_FILES

-> files installed into boot partition when
using WIC with bootimg-partition

ready to be
deployed

Source files need to be located in
DEPLOY_DIR_IMAGE.

4
[]
Rs
DEPLOY_DIR_IMAGE v
${DEPLOY_DIR}/images/${MACHINE}/
rootfs
-> used by WIC rootfs
plugin

’ inovex

Installer otfs from
kerne ~diate \ocation b=

IMAGE_BOOT_FILES

-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

(o) & o . /}7]}(/_
©e B N
/781‘,3/ M//[‘/)
IMGDEPLOYDIR DEPLOY_DIR_IMAGE b \/-
${WORKDIR}/deploy-${PN}-image-complete ${DEPLOY_DIR}/images/${MACHINE}/ :
rootfs
-> used by WIC rootfs
plugin

’ s
12 inovex

13

Installer

T

IMAGE_BOOT_FILES

-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

{
0324
IMGDEPLOYDIR

${WORKDIR}/deploy-${PN}-image-complete

: . &
Rs I
Nsr. Wiy
DEPLOY_DIR_IMAGE e v

${DEPLOY_DIR}/images/${MACHINE}/

rootfs
-> used by WIC rootfs

plugin
’ inovex

Installer otfs from
kerne ~diate \ocation b=

IMAGE_BOOT_FILES

-> files installed into boot partition when
using WIC with bootimg-partition

Source files need to be located in
DEPLOY_DIR_IMAGE.

(o) = . /}7]}
oL 4 a
IMGDEPLOYDIR DEPLOY_DIR_IMAGE o '\/-
${WORKDIR}/deploy-${PN}-image-complete ${DEPLOY_DIR}/images/${MACHINE}/ :
rootfs
-> used by WIC rootfs
plugin

’ s
14 inovex

15

init-install-efi.sh

bootfs=${device}${part_prefix}1
rootfs=${device}${part_prefix}2
swap=${device}${part_prefix}3

eChO 13k 5k ok ok ok >k %k ok ok ok ok ckook kok kok M

echo "Boot partition size:
echo "Rootfs partition siz
echo "Swap partition size:
echo Tk ook ok sk kR ok ok sk k kokok sk sk k ok 1Y

echo "Deleting partition t
dd if=/dev/zero of=${devid

echo "Creating new partiti
parted ${device} mklabel q:

echo "Creating boot partit
parted ${device} mkpart b
parted ${device} set 1 bo

echo "Creating rootfs part
parted ${device} mkpart r akeameme.org

echo "Creating swap partition on $swap"
parted ${device} mkpart swap linux-swap $swap_start 100%

parted ${device} print

"WCNVGD(

mc:vgrid-image

e ° °
/ multiconfig approach
/\ IMAGE_BOOT_FILES
£® 5;‘ \
IMGDEPLOYDIR DEPLOY_DIR_IMAGE Actual image

\ rootfs usable without installer

mender-enabled-image.uefiimg.bz2

mc:installer \\\\\\
b
/\ ﬁAGE_BOOT_FILES

O <
& Rs
Installer
IMGDEPLOYDIR DEPLOY_DIR_IMAGE NE

initramfs with
16 rootfs init-install-efi-mender.sh

17

vgrid-images-buildtask.bb

SUMMARY = "Build the actual images as an inner payload"

PACKAGE_ARCH = "${MACHINE_ARCH}"
PACKAGES = "${PN}"

INHIBIT_DEFAULT_DEPS = "1"

Variables to control where images are found: the multiconfig name, and the deploy dir.
CONTAINER_PACKAGE_MC ?= "vgrid-images"

CONTAINER_PACKAGE_DEPLOY_DIR = "${TOPDIR}/tmp-vgrid-images-glibc/deploy/images/intel-corei7-64"

do_install[mcdepends] += "mc:vgrid-installer:vgrid-images:vg-image-provisioning:do_image_complete"
do_install[mcdepends] += "mc:vgrid-installer:vgrid-images:vg-image-update:do_image_complete"

do_install() {
install ${CONTAINER_PACKAGE_DEPLOY DIR}/${IMAGE}.uefiimg.bz2 ${D}/${BASE}.uefiimg.bz2

}
FILES:${PN} = "/${BASE}.uefiimg.bz2"

we don't need those!
do_configure[noexec] = "1"
do_compile[noexec] = "1"
deltask do_populate_sysroot

"WCNVGD(

vgrid-image-installer.bb

SUMMARY = "Minimal installer image"
require recipes-core/images/core-image-base.bb

PACKAGE_INSTALL:append = " vgrid-images-buildtask" . . .
vgrid-distro-installer.bb

IMAGE_BOOT_FILES:append = " \
${IMAGE_ROOTFS}/${PAYLOAD IMG_NAME}.uefiimg.bz2 \

header: kas-installer.yml

version: 16
includes:
- kas/common-intel.yml

-

distro: vgrid-distro-installer
target: mc:vgrid-installer:vg-image-installer

local _conf_header:

usb-provisioning: |
BBMULTICONFIG = "vgrid-images vgrid-installer" v
18 inovex

19

Login Users

with read-only rootfs and A/B updates
- but sound and secure

v inovex

20

Requirements & Challenges secure password per device

or
/ enforce password change

user who is allowed to
log in

/etc/passwd needs to be
A/B partitioning schema writable

for OTA updates

read-only rootfs

create volatile-bind for /etc
and use encrypted partition as

dm-verity

general security

a target
’ inovex

volatile-binds.bb

-

We need to overlay /etc for writeable system configurations,
e.g. changing the user's password.
VOLATILE_BINDS:append = " \

/data/config /etc\n \

We need to make sure the target directories exist otherwise
the bind-mount will fail
FILES:${PN} += " \

/data/config \

do_install:append() {
install -d ${D}/data/config
}

Other possible implementations:

e overlayfs.bbclass

e overlayfs-etc.bbclass
OverlayFS and its use in Yocto Project

21

v

\ 4

inovex

https://static.sched.com/hosted_files/osseu2022/70/OverlayFS%20in%20Yocto.%20Vyacheslav%20Yurkov.pdf?_gl=1*1x6bm38*_gcl_au*NTQ3Nzg3MjkyLjE3MjU4OTk4OTQ.*FPAU*NTQ3Nzg3MjkyLjE3MjU4OTk4OTQ

vgrid-image.bb

ROOTFS_POSTPROCESS_COMMAND +=
'${@bb.utils.contains_any('VG_FEATURES', 'vg-expire-password', 'set_password_expiry; ', '',d)}’

set_password_expiry() {
export PSEUDO="${FAKEROOTENV} ${STAGING DIR_NATIVE}${bindir}/pseudo”
flock -x ${IMAGE_ROOTFS}${sysconfdir} -c "$PSEUDO chage -R ${IMAGE_ROOTFS} -d@ ${AUTHORIZED USER_NAME}"

22 v inovex

23

Encrypted data partition

Utilizing LUKS2, TPM2 and systemd

V.
1novex

Encrypt on runtime

[,A ;:] ‘/@
:: LUKS
Systemd N0 Linux Unified Key Setup
systemd service encryption script
- triggers encryption - write LUKS header on
- runs before data.mount existing partition

cryptsetup reencrypt --encrypt

- actual online encryption
cryptsetup reencrypt

24

) 4]
systemd 5 LUKS

Linux Unified Key Setup

encryption script
- link TPM to LUKS device
systemd-cryptenroll

"' inovex

25

Prepare in image

fstab

- UUID=<data-uuid> /data ext4 rw 0 2
+ /dev/mapper/data /data ext4 rw 0 2

fstab is modified by Mender in a
ROOTFS_POSTPROCESS_COMMAND !

crypttab

data UUID=<data-uuid> none tpm2-device-auto,tpm2-pcrs=7

At early boot and when the system manager
configuration is reloaded, /etc/crypttab is
translated into systemd-cryptsetup@.service

units by systemd-cryptsetup-generator(8).

inovex

https://www.freedesktop.org/software/systemd/man/latest/systemd-cryptsetup-generator.html#

26

Dealing with Limits

Using KAS to patch .bbclass, .inc or similar
“unpatchable” files in Yocto

v inovex

meta-mender:

layers: kas/common.yml
meta-mender-core:

branch: kirkstone

url: https://github.com/mendersoftware/meta-mender.git

path: sources/meta-mender

patches:

encrypted-data:

repo: meta-vgrid
path: patches/meta-mender/mender-use-mapper-device-for-data.patch

meta-vgrid/patches/meta-mender/mender-use-mapper-device-for-data.patch

diff --git a/meta-mender-core/classes/mender-setup-image.inc b/meta-mender-core/classes/mender-...
index 85383d27..3fc4097a 100644
--- a/meta-mender-core/classes/mender-setup-image.inc
+++ b/meta-mender-core/classes/mender-setup-image.inc
@@ -58,7 +58,7 @@ mender_update_fstab_file() {
fi

mkdir -p ${IMAGE_ROOTFS}/data

- printf "%-20s %-20s %-10s %-21s %-2s %s\n" ${tmpDataPart} /data ${MENDER_DATA PART_FSTYPE} ...
B printf "%-20s %-20s %-10s %-21s %-2s %s\n" ${MENDER_DATA_PART_CRYPT} /data ${MENDER_DATA_PA...

27 v inovex

28

Why and when am I using this mechanism?

e patching files where .bbappend is not possible, e.g.
.bbclass, .inc, ROOTFS_POSTPROCESS_COMMAND functions, ...

e when copying the file to our own layer does not make sense, e.g.
o just a one-line change

o want to get updates and see if the original file changes

e when copying the file to our own layer does not work, e.g.
o an e.g..inc file that's already used in the original layer
o priority issues

-> not Yocto-by-book, but a really clean and maintainable way to work around limits
-> no replacement for .bbappend!
’ inovex

29

Encrypted data partition

Utilizing LUKS2, TPM2 and systemd

V.
1novex

vgrid-distro.conf

PACKAGECONFIG:append:pn-cryptsetup = " cryptsetup veritysetup udev luks2"
PACKAGECONFIG:append:pn-systemd = " cryptsetup tpm2"

systemd_%.bbappend

do_install:append() {
install -d ${D}${11bd1r}/cryptsetup
install -m @755 $4° " a-systemd-tpm2.so \

$- lup-token-systemd-tpm2.so
} Fixed in scarthgap!

FILES:${PN}:append = “q
${base_libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \
${libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \

30 v inovex

31

encrypt-data.sh

echo "Generating a new key..."
/usr/bin/openssl rand -base64 44 > ${tmp_key_ file}

echo "Writing encryption headers..."
/bin/cat "${tmp_key file}" | /usr/sbin/cryptsetup reencrypt --encrypt --type luks2 --key-slot=1 \
--batch-mode --init-only --reduce-device-size 32M --offset="${OFFSET}" "${data_dev}" data

Enrolling the TPM2 integration only works after the online encryption step is finished.
echo "Encrypting the data partition..."
/bin/cat ${tmp_key file} | /usr/sbin/cryptsetup reencrypt --offset="${OFFSET}" "${data_dev}"

echo "Deploying TPM2 keys..."

export PASSWORD="$(cat ${tmp_key file})"

/usr/bin/systemd-cryptenroll --tpm2-device=auto --tpm2-pcrs=7 "${data_dev}"
unset PASSWORD

\.

““" inovex

&2

secure-boot

and Mender

i

The Complete ,
of Biack Dagic |
and ({litche 'ﬁ" |

’ inovex

33

boot into UEFI with
secure boot enabled

load boot files
from /boot/efi

boot kernel

a error screen

grubx64.efi.p7b

[]

e grub.cfg.p7b check signatures

e boot-menu.inc.p7b

e bzImage.p/b E] I
/boot/efi e

’ inovex

34

meta-secure-core/meta-efi-secure-boot

grub-efi, efitools, mokutil, shim, ...

patches for GRUB

signing tasks for kernel, bootloader, ..

TPM integration for keys and certificates
automated certificate provisioning boot step

... but all examples and documentation utilize an initramfs!

Best read for kirkstone: Discussion on Mender and secure boot

’ inovex

https://github.com/Wind-River/meta-secure-core/tree/kirkstone/meta-efi-secure-boot
https://hub.mender.io/t/mender-and-efi-secure-boot-on-intel-corei7-64/4862

MACHINE_FEATURES:append = " efi tpm2" vgrid-distro.conf
DISTRO_FEATURES:append = " \ r

security \

tpm2 \

efi-secure-boot \

MOK_SB = ""
SIGNING_MODEL = "user"
A\ A . .
vgrid-image.bb
IMAGE_INSTALL:append = " \

tpm2-tools \

libtss2-tcti-device \

efitools \

seloader \
update-signed-kernel-state-script \

Deploy kernel and signature to boot partition.

They cannot be verified on rootfs partition.

#

Mender processes IMAGE_BOOT_FILES and has some issues with multiline parsing
IMAGE_BOOT_FILES:append = " ${KERNEL_IMAGETYPE} ${KERNEL_IMAGETYPE}${SB_FILE_EXT}"

“.ll"' inovex

overwritten
90_mender_boot_grub.cfg

mender_kernel path=
if ["${drop_to_grub_prompt}" = "no"];
then

search --no-floppy --label --set=root boot

if linux "${mender_kernel_path}/${kernel_imagetype}" root="${mender_kernel_root}" ${bootargs};

then
if test -n "${initrd_imagetype}" -a test -e "${mender_kernel path}/${initrd_imagetype}";
then

initrd "${mender_kernel_path}/${initrd_imagetype}"

fi
maybe pause "Pausing before booting."
boot

fi

maybe pause "Pausing after failed boot."

\\fi

36 v inovex

37

It works now, but ...

the kernel image within the boot partition is NOT managed by Mender!

e use Mender state scripts to copy the kernel to /boot/efi

o executed as Enter or Leave action to the Mender states
o ArtifactInstall Leave_ 05 kernel _update
o ArtifactRollback Leave 05 kernel rollback

’ inovex

38

And in the end?

We have built a hepefullty rock-solid and secure system,
with clean, understandable and maintainable code.

And a lot time spent into bringing pieces together!

v inovex

39

Thank you! VGRID

Time for questions.

https://vgrid.io
https://safercities.com

@45
;%_" o B
e

Anna-Lena Marx
Embedded Systems Developer

anna-lena.marx@inovex.de

inovex is an IT project
center driven by innovation
and quality, focusing its
services on ‘Digital
Transformation’.

e founded in 1999

e 500+ employees

e 8 offices across
Germany

O] O]

N

www.inovex.de

’ inovex

mailto:anna-lena.marx@inovex.de
https://vgrid.io
https://safercities.com

