
Built-in security
Sichere Webapps dank moderner Browserfeatures

Clemens Hübner
inovex

Software Security Engineer @ inovex

Helps to secure systems, still hacks them

Located in Munich

Clemens Hübner

2

@ClemensHuebner chuebner@inovex.de

@inovexgmbh @inovexlife

Browsers are the central entrance to the internet
3

Server and client - it’s complicated

Need (or wish) to do some
things in the browser:

› User interaction
› Access to device features
› Strong authentication
› E2E-encryption
› Client-side reporting

4

Don’t trust the client!

Problems developing client-side webapps

› Limitations of JavaScript
› Problems with 3rd-party

dependencies
› Diversity of browsers,

systems, devices
› Environment is hard to

control and potentially
compromised

5

Existing security measures in browsers

› Same Origin Policy
› HTTPS

– Certificate management,
warning of unsecure connections

› Cookie Handling
› Security Header

– X-Frame-Options
– X-XSS-Protection
– CSP

› Credential management & checking

6

STRONG AUTHENTICATION

CLIENT-SIDE REPORTING

Implementing new features for the client

7

E2E-ENCRYPTION

STRONG AUTHENTICATION

8

Status quo of authentication

› Authentication with
username & password

› sometimes: 2FA (TOTP,
Push Notification, ...)

9

Problem with password-based authentication

› Human brains are not made for
remembering random strings

→ need for password managers

› Threat of phishing, even with 2FA

› Need for transmitting and storing
passwords securely

10

11

12

› use possessed or biometric
factors

› use public-key based
challenge-response (no
leakage of any secret)

› integration into platform for
integrated phishing
protection

Solution: Less knowledge-based authentication

13

Demo time!

14

https://webauthn-demo-c26fb.web.app/

Architecture

15

Platform
Authenticators

Platform

Browser

Application

External
Authenticators

Relying Party

Architecture

16

Platform
Authenticators

Platform

Browser

Application

External
Authenticators

Relying Party

WebAuthn CTAP

The two WebAuthn Ceremonies

17

Creating a public key
credential,
scoped to a Relying Party
with a user’s account

Registration Ceremony Authentication Ceremony

Proving the presence and
consent of the user that
registered the public key
credential

Attention: That’s all!

Architecture

18

Platform
Authenticators

Platform

Browser

Application

External
Authenticators

Relying Party

WebAuthn CTAP

Registration flow: Initiation

19

{
 "rp":{
 "name":"WebAuthn demo server", "id":"webauthndemo.inovex.de"
 },
 "user":{
 "id":"CCDcj5Dx", "displayName":"Clemens Hübner"
 },
 "challenge":"Q7MBekjcE9LlIwcyskj_Dj_SHtJkfe1QemS8HhoRRrA",
 "pubKeyCredParams":
 [{ "alg":-7, "type":"public-key" }, { "alg":-257, "type":"public-key" }],
 "authenticatorSelection":{
 "authenticatorAttachment":"cross-platform"
 },
 "attestation":"direct"
}

→ PublicKeyCredentialCreationOptions

Registration flow: API-Call

20

navigator.credentials.create(
{ publicKey: PublicKeyCredentialCreationOptions }

);

Registration flow: Response

21

{
 "attestationObject": "o2NmbXRoZmlkby11MmZnYXR0U3RtdKJjc2lnWEgwRgIhAP9qYQY...",
 "clientDataJSON": "eyJjaGFsbGVuZ2UiOiJyZTlKSUNUX1VXZUJ2ekhETkJRd2tlWU9DTF..."
}

{
 "challenge": "Q7MBekjcE9LlIwcyskj_Dj_SHtJkfe1QemS8HhoRRrA",
 "hashAlgorithm": "SHA-256",
 "origin": "https://webauthndemo.inovex.de",
 "type": "webauthn.create"
}

Login flow: Initiation

22

{
 "challenge":"fyKHLm3Rqt3jntx7XEXOA5x3uJb1yjmv20aod3gvj8Y",
 "rpId":"webauthndemo.inovex.de",
 "allowCredentials":[
 {
 "type":"public-key",
 "id":"1eVJX8Po7SSASUnDGnHcV_I03zLMaOXvn89jHUDvfqTdU6hJ9AJO9XWh",
 "transports":"usb,nfc"
 }
],
 "userVerification":"preferred”
}

→ PublicKeyCredentialRequestOptions

Login flow: API-Call

23

navigator.credentials.get(
{ publicKey: PublicKeyCredentialRequestOptions }

);

Login flow: Response

24

{
 "authenticatorData": "SZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2MBAAAAnQ",
 "clientDataJSON": "eyJjaGFsbGVuZ2UiOiJFWmtXN2ZKSjV4RFo5NFdFT1l1emt4UW1jeVpo...",
 "signature": "MEUCIQCEdWLdMFw-F5RdYpNA8-ZFgZbhqS49foTZNVXvGE5GygIgLyWPXk6lXxR2e8yY"
}

{
 "challenge": "fyKHLm3Rqt3jntx7XEXOA5x3uJb1yjmv20aod3gvj8Y"
 "hashAlgorithm": "SHA-256",
 "origin": "https://webauthndemo.inovex.de",
 "type": "webauthn.get"
}

WebAuthn

› W3C Recommendation since March 2019 (Level 1)
resp. April 2021 (Level 2)

› today, >90% global usage possibility

25

caniuse.com, 21.06.2022

26

Firefox 69 / 89

Android 8 / 11

Different UI on different platforms

Chrome 92

Takeaways WebAuthn

› promising standard, yet not
widely implemented

› platform-dependent UI and
behaviour

› basic functions, needs
processes and concepts
around it

› implementation requires user
education and guidance

27

E2E ENCRYPTION

28

Problems with cryptography in the browser

› no native implementation of

cryptographic operations
– no cryptographic randomness

› wide range of libraries with varying
quality

› difficulty to protect against different
attack vectors, e.g. side-channel attacks

› bad performance
› need to maintain critical dependencies

29

Anyone can design a cipher that he himself cannot
break. This is why you should uniformly distrust
amateur cryptography, and why you should only use
published algorithms that have withstood broad
cryptanalysis.

- BRUCE SCHNEIER

30

› end-to-end encryption for cloud
storage

› improve authentication
methods

› secure transport of sensitive
data

› integrity protection of locally
stored data

31

Use cases for client-side cryptography

Web Crypto API

› asynchronous, platform-independent

JavaScript-API
› interface for low-level

cryptographic operations
– cryptographically secure random

numbers
– key generation and handling
– symmetric and asymmetric

crypto systems

32

Operations and algorithms

› generateKeys()
– AES, RSA, ECDSA, ...

› deriveKeys()
– ECDH, HKDF, PBKDF2

› importKeys(),
exportKeys()

› wrapKeys(),
unwrapKeys()

33

› digest()
– SHA-1, SHA-2

› sign(), verify()
– RSA, ECDSA, HMAC

› encrypt(), decrypt()
– RSA, AES

› getRandomValues()

Web Cryptography API

› W3C Recommendation since January 2017
› today, >95% global usage possibility

34

caniuse.com, 21.06.2022

Example

iv = window.crypto.getRandomValues(new Uint8Array(16));
encryptedMessage = window.crypto.subtle.encrypt(

{
 name: "AES-CBC",
 iv

},
key,
encodedMessage

);

35

Takeaways Web Crypto API

› easy, standardized access to cryptographic operations
› performant calculations
› context-defined access to the key storage

› still: requirement of cryptographic knowledge
› even greater need to thoroughly secure webapp

36

CLIENT-SIDE REPORTING

37

Logging must not be limited to your server

› diversity of browsers,
systems, devices

› errors and crashes will
happen in the wild

› extensive clientside logging
is hard

→ How to obtain information
 about browser errors?

38

Content-Security-Policy:
default-src 'self';
img-src *;
script-src my.analytics.com;

→ What happens if some subpage wants to load a video
from YouTube?

39

Content-Security-Policy:
default-src 'self';
img-src *;
script-src my.analytics.com;
report-uri https://example.com/reports;

40

Content-Security-Policy:
default-src 'self';
img-src *;
script-src my.analytics.com;
report-to csp-endpoint;

Reporting-Endpoints:
csp-endpoint="https://example.com/reports"

41

Scope of the Reporting API

The API allows to get reports about

› CSP violations
› Deprecation reports
› CORS errors
› Crash reports
› Network Error Logging (NEL)
› Permission Policy violations

42

› HTTP-Header
› allows to define

endpoints for reporting
› reports are delivered

out-of-band by
POST-request of type
 application/reports+json

› JavaScript API
› allows capturing and

handling of reporting
events in the client code

43

The Reporting API defines two interfaces

Reporting-Endpoints ReportingObserver

const observer = new ReportingObserver(
 (reports, observer) => { ... },
 {types: ['deprecation']}
);

Receiving reports

› own implementations
› Sentry

– support for CSP,
Expect-CT, HSTS reports

› report-uri.io
– wide support for different

report types
› only for CSP violations:

services like CSPer

44

Reporting API

› Working Draft, latest version April 2022
› today, >70% global usage possibility already

45

caniuse.com, 21.06.2022

Takeaways Reporting API

› Reporting API is not
standardized yet, still work in
progress

› mostly driven and
implemented by Google
Chrome

› potentially helpful insights
into the deployed application

46

STRONG AUTHENTICATION

CLIENT-SIDE REPORTING

Implementing new features for the client

47

E2E-ENCRYPTION

Takeaways

48

Trend towards standardization
allow usage of browser features

Need to handle the small
differences in the implementations

Obligation to thoroughly analyze
your threat model for the client

Further resources

WebAuthn
› Specifications: Level 1, Level 2, latest draft
› Simple demo, extensive demo

Web Crypto API
› Specification: latest
› Documentation, Proof-of-concept app

Reporting API
› Specification: Working Draft;
› Demo 1, Demo 2, blog article

49

https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://w3c.github.io/webauthn/
https://webauthn.io
https://webauthn.me/
https://www.w3.org/TR/WebCryptoAPI/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://showcase-wca.web.app/
https://www.w3.org/TR/reporting-1/
https://canhas.report/
https://reporting-observer-api-demo.glitch.me/
https://developers.google.com/web/updates/2018/09/reportingapi

Vielen Dank

Clemens Hübner

@ClemensHuebner

chuebner@inovex.de

@inovexgmbh

@inovexlife

