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Zusammenfassung

Herzrhythmusst�orungen sind weltweit eine der h�au�gsten Todesursachen. Diese

Todesf�alle k�onnen vermieden werden, wenn Herzrhythmusst�orungen fr�uhzeitig

erkannt und �uberwacht werden. Die Elektrokardiographie ist ein wichtiges Instrument

zur Erkennung von Herzrhythmusst�orungen, erfordert jedoch spezielle Ger�ate und

geschultes Personal. Um �Arzte bei der Elektrokardiogramm-Diagnose zu unterst�utzen,

wurden bereits zahlreiche Machine- und Deep-Learning-Techniken entwickelt. Diese

Techniken ber�ucksichtigen verschiedene Aspekte wie die zu klassi�zierenden Arrhyth-

mien oder die Anzahl der verwendeten Elektrokardiogramm-Kan�ale. Neuerdings

wird Photoplethysmographie zunehmend als Alternative zur �Uberwachung der kardio-

vaskul�aren Gesundheit auch au�erhalb des klinischen Umfelds eingesetzt. W�ahrend

einige Smart Watches bereits in der Lage sind, einzelne Arrhythmien zu erkennen,

sind die Ans�atze zur Klassi�zierung von multiplen Arrhythmien noch begrenzt. Das

Ziel dieser Arbeit ist die Verbesserung der Klassi�zierung von multiplen Herzrhyth-

musst�orungen mit Photoplethysmographie. Dabei wird der Einsatz von Transfer

Learning als eine M�oglichkeit zur Verbesserung evaluiert. Dazu wird eine Mod-

ellstruktur entwickelt, die auf Elektrokardiogrammen trainiert wird. Diese vereint

Vorteile und Aspekte aus fr�uheren Arbeiten. Eine Herausforderung dabei ist die Un-

terrepr�asentation einiger Klassen in der Elektrokardiogramm-Datenbank. Dies f�uhrt

dazu, dass die entwickelte Modellarchitektur nicht die Benchmark-Ergebnisse aus

vorherigen Publikationen erreicht. Daher wird zus�atzlich ein Ensemble aus mehreren

bin�aren one-vs-all Klassi�katoren betrachtet. Das Ensemble-Modell erreicht bei der

Klassi�kation von f�unf Herzrythmusklassen einen F1-Score von 91%. Bei der Klassi-

�kation von Herzrhythmusst�orungen auf der Basis von Photoplethysmogrammen f�uhrt

die Anwendung von Transfer Learning zu einer Verbesserung gegen�uber dem Modell,

das nur auf Photoplethysmographie-Daten trainiert wurde. Die besten Ergebnisse

erzielt jedoch wieder das Ensemble-Modell mit einem F1-Score von 89%. Die Arbeit

zeigt, dass die Anwendung von Transfer Learning in der Arrhythmieklassi�kation zu

Verbesserungen f�uhren kann. Das Ensemble-Modell ist jedoch ein Ansatz, der vielver-

sprechendere Ergebnisse liefert und die Benchmark-Ergebnisse im Bereich der Klassi-

�zierung von Herzrhythmusst�orungen mittels Photoplethysmographie �ubertri�t.
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Abstract

Cardiac arrhythmias are one of the leading causes of death worldwide. These deaths

can be prevented if arrhythmias are detected and monitored early. Electrocardiogra-

phy is a major tool for detecting arrhythmias. However, it requires specialized equip-

ment and trained personnel. Many machine learning and deep learning techniques

have been developed to help doctors diagnose electrocardiograms. These techniques

incorporate di�erent aspects such as the number of arrhythmias to be classi�ed or

the number of electrocardiogram channels used. More recently, photoplethysmogra-

phy has been increasingly used as an alternative for monitoring cardiovascular health

in nonclinical settings. While some smartwatches can already detect single arrhyth-

mia classes, approaches to classify multiple arrhythmias are still limited. This work

aims to improve the classi�cation of multiple arrhythmias using photoplethysmog-

raphy. Thereby, the use of transfer learning is evaluated to improve classi�cation

performance. For this purpose, a model structure is developed that is trained on elec-

trocardiograms. This model design combines advantages and aspects from previous

work. One challenge is the underrepresentation of some classes in the electrocardio-

gram database. As a result, the performance of the developed model architecture is

behind the benchmarks published in previous work. Therefore, an ensemble of several

binary one-vs-all classi�ers is additionally considered. The ensemble model achieves

an F1-score of 91% for the classi�cation of �ve arrhythmia classes on electrocar-

diography data. When classifying arrhythmias based on photoplethysmography, the

application of transfer learning leads to an increase in performance over the model

trained on photoplethysmogram data solely. However, the ensemble model again

achieves the best performance with an F1-score of 89%. The work shows that ap-

plying transfer learning to arrhythmia classi�cation can lead to a performance gain.

However, the ensemble model is an alternative method that yields more promising

results and outperforms the benchmark results in multiclass arrhythmia classi�cation

on photoplethysmography.
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1 Introduction

The introduction of this work begins with the motivation of why it is important

to detect and classify cardiac arrhythmias based on electrocardiograms and photo-

plethysmography. Then, the research aims are presented. Afterwards, the company

is introduced, with whose cooperation the thesis is written, and �nally, an overview

of the thesis structure is given.

1.1 Motivation

According to the World Health Organization (WHO), cardiovascular diseases are

the most common non-communicable disorder worldwide, responsible for an esti-

mated 17.8 million deaths in 2017. As the UN Sustainable Development Goals aim

to reduce premature mortality from non-communicable diseases by one-third be-

fore 2030, accurate early detection systems for heart failure that can continuously

monitor individuals are required [1].

Arrhythmia is a commonly diagnosed cardiac disease caused by an irregular heart-

beat. It occurs when the electrical impulses that coordinate the heartbeat malfunc-

tion. This results in a heartbeat that is too fast or too slow, or a skipping of the

heartbeat [2]. All humans experience irregularities in their heart rate. Thus, it is

important to distinguish between di�erent types of heartbeats. Initially, harmless

irregular beats can develop into persistent cardiac arrhythmias over time, becoming

life-threatening in the worst case. Therefore, it is important to classify the various

arrhythmias [3].

Currently, cardiac arrhythmias are usually detected after complex examinations

in the clinical environment with the help of electrocardiograms (ECGs). However,

such examinations are normally carried out when the patient notices symptoms.
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Some patients do not notice any changes even though they su�er from arrhythmias

[4]. ECGs are used as a standard in everyday clinical practice. Thus, more than

300 million ECG strips are produced worldwide every year [5], which have to be

evaluated manually by doctors. Nevertheless, not all individuals who would need

such monitoring are regularly screened for arrhythmias.

The advancement of deep learning o�ers new possibilities in the automatic anal-

ysis of ECG strips. Several studies have been published in recent years on the

application of machine and deep learning in the �eld of arrhythmia classi�cation

[6][7][8]. Despite a meanwhile very good automatic classi�cation capability, ECGs

are still too expensive and too impractical to obtain permanent monitoring of all

individuals.

Photoplethysmography (PPG) is a technique that has become increasingly popu-

lar in recent years. It can be used to measure the volumetric change of blood in the

microvascular bed of tissue, which correlates with the heart cycle. This produces

waveforms that are related to those from the ECG. There are already initial e�orts

to use this technique for the detection of cardiac arrhythmias, as it is cheaper and

easier to use than ECGs. This technique can be found, for example, in smart devices

such as smartwatches, but can also be recorded using the mobile phone camera and


ash.

However, previous methods in this area mostly use classic machine learning ap-

proaches in order to detect abnormalities in the heart function, which are very time-

consuming due to manual feature generation [4][9]. In the last year, deep learning

has been used in some research, but the performance does not reach that of ECG

approaches yet.

To transfer the good results from ECGs to PPGs, initial e�orts are being made

to apply transfer learning. For example, models are trained with ECG data, and

the last layers of the network are frozen and re-trained with PPGs afterwards. In

2021, two papers were published by Radha et al. [10] and Li et al. [11] that use

transfer learning to classify the sleep stage of individuals. The models are each

pre-trained on ECGs and then transferred to PPGs. Both �nd an improvement in

accuracy compared to the models trained on PPGs only. In addition, an article

published in 2021 by Ramesh et al. [12] applies transfer learning in the �eld of
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arrhythmia classi�cation. The approach aims to classify one particular type of

cardiac arrhythmia, based on the heart rate variability extracted from ECGs. Then

the �nal layers are re-trained with the pulse rate variability from PPGs. Since initial

successes have already been achieved with the transfer learning approach from ECGs

to PPGs, this work will examine whether a transfer learning method can likewise

achieve better results in the multiclass classi�cation of arrhythmias.

1.2 Objective

Two primary objectives are investigated in this project.

1. How can a model for classifying cardiac arrhythmias be designed that combines

the advantages/aspects of previous publications? This question is addressed by

comparing di�erent approaches in the literature and identifying the advantages

of each publication. In addition, the challenges and de�cits of the previous

approaches are considered so that possible research gaps can be closed.

2. Does a model pre-trained with ECG data and applied to PPG data via transfer

learning achieve a better F1-score in multiclass arrhythmia classi�cation than

a model trained on PPG data only? Therefore, the model resulting from the

�rst research question is transferred to PPG data. If the model achieves an

F1-score outperforming that of the model trained on PPG-only data, this can

be considered a success.

In the following, the particular steps that need to be undertaken to answer the

the �rst research question are speci�ed:

• Conduction of a comprehensive literature review focusing on the classi�cation

of cardiac arrhythmias based on ECGs and PPGs.

• Identi�cation of advantages and important aspects in the literature.

• Identi�cation of challenges and shortcomings of previous publications to detect

research gaps.

• Creation of a model structure and approach that combines the advantages of

previous publications.
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To answer the second research question following tasks are conducted:

ˆ Implementation and training of the model structure developed in 1. with ECG

sequences, taking into account further aspects that are found in the answering

of the �rst research question.

ˆ Implementation and training of the model with PPG data.

ˆ Execution of transfer learning by re-training the �nal layers of the model

trained on ECG data on the PPG sequences.

ˆ Comparison of the performance of the PPG-only model with the transfer learn-

ing model.

Accordingly, this work results in a model that detects and classi�es cardiac ar-

rhythmias in ECGs. Various aspects regarding the advantages and disadvantages of

previous publications are to be taken into account. Exemplary aspects are the clas-

si�cation possibility of several arrhythmias or that the model works as well in new

patients as in subjects from the training data set. Furthermore, the transferability

of the model to PPG data must be considered.

The proposed model is based on the paperTopological Data Analysis for Arrhyth-

mia Detection Through Modular Neural Networkspublished in 2020 by Dindin et al.

[13]. The authors developed a modular multichannel neural network consisting of an

autoencoder, a deep convolutional neural network (DCNN), handcrafted features,

and topological data analysis (TDA). The autoencoder, as well as the topological

data analysis, are re-implemented. The structure of the DCNN is adopted to the

data used in this work. An overview of the exact model structure is given in Chapter

4.

1.3 Environment

The thesis is written in cooperation with the companyinovex GmbH in Karlsruhe.

inovex is an innovation and quality-driven IT project house with a focus on digital

transformation. Approximately 500 employees at seven locations in Germany sup-

port customers from di�erent industries in the realization of digital use cases. The

company's portfolio includes mobile apps, robotics, backend services, cloud services,
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data science, and deep learning [14].

The focus ofinovex can be divided into three �elds. TheApplication Development

unit includes software development with backend and frontend, as well as UI/UX

design. The employees from theIT Engineering and Operations division develop

infrastructure for various projects. And theData Management and Analyticsde-

partment creates data-driven solutions using machine and deep learning methods,

as well as big data and business intelligence [14].

Furthermore, inovex is involved in several research projects and science. New

technologies are developed in the areas of Internet of Things (IoT), arti�cial intel-

ligence, and e-health. Within this scope, many theses are o�ered in the company.

Both academic questions and concrete use cases from the economy are investigated

[15]. Such work belongs to the area ofinovex Lab, the central unit for research and

development [16]. This work was undertaken as part of theinovex Laband aims to

gain further insights into the topic of e-health.

1.4 Structure

Chapter 1 provides an overview of the motivation, objectives and the working envi-

ronment of the project. Chapter 2 introduces relevant theoretical foundations in the

�eld of medicine and topological data analysis. Chapter 3 discusses prior research

that is relevant to this project, which is mostly research related to the automatic

classi�cation of arrhythmias based on ECGs and PPGs. Chapter 4 describes the

methods used in the project, including the generation of the data set, the concept of

the multichannel neural network and a description of each model component. Chap-

ter 5 presents the implementation and results of the proposed network on ECG data

and the transfer to PPG data. Finally, chapter 6 discusses and summarizes the �nd-

ings of the thesis, describes the limitations of the methods, and gives suggestions

for further research.
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2 Theoretical Foundations

Relevant terms from the �elds of medicine and informatics are presented below. The

technology of electrocardiography and photoplethysmography is outlined to create

an understanding of the di�erences between these two methods. In addition, cardiac

arrhythmias are introduced and some classes that will be categorized in the later

model are explained. Further, topological data analysis is delineated with a focus

on persistent homology, which can be used to obtain features for the classi�cation

of arrhythmias.

2.1 Electrocardiography and Photoplethysmography

The most common diagnostic method for cardiac arrhythmias is the recording of

an electrocardiogram (ECG). The advantage of this method is a quick and reliable

assessment of heart function.

Figure 2.1: Cross-section of the heart { the sinus node gives the beat and thus de-
termines the heart rhythm [17].
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An ECG records the electrical activity of all heart muscle �bers. With every heart-

beat, the heart muscles change their electrical properties. These voltage changes are

measured on the patient's body with electrodes. The resulting heart electricity curve

is called an electrocardiogram [18]. The ECG can be used to monitor the rhythm of

the heart. Each heartbeat is represented in the ECG as a waveform. Three consecu-

tive heartbeats with identical waveforms are de�ned as one rhythm. The similarity

of the waveforms indicates that the beat has the same origin. Normally, the sinus

node (cf. Figure 2.1) is the predominant pacemaker centre and thus the resulting

rhythm is called sinus rhythm. Other pacemakers may be, for example, parts of

the atrial myocardium or clusters of cells around the atrioventricular node. If a cell

develops pathological automaticity, extrasystoles and arrhythmias can occur [19].

Figure 2.2: Waveform of one heart beat which consists of a P-wave, a QRS-complex
and a T-wave [20].

A waveform (shown in Figure 2.2) consists of the P-wave, the QRS-complex and

the T-wave. The P-wave represents depolarisation of the atrium, the QRS-complex

indicates depolarisation and contraction of the ventricles and the T-wave denotes

repolarization of the ventricles [2]. The distance between two R-spikes is used to

calculate the heart rate. Normal sinus rhythm is characterised by regularity with a

heart rate of 50 to 100 beats per minute. In addition, the P-wave has a constant

morphology before each QRS-complex [19].

There are di�erent types of ECGs, which di�er in their number of electrodes

and leads. There are a total of twelve leads (cf. Figure 2.3), which are measured

with a sum of ten electrodes. Such an ECG is called a 12-lead ECG and is part
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Figure 2.3: Example of a 12-lead-ECG. Lead II is used in this work [21].

of standard diagnostics. For a long-term ECG (24 hours), a total of three leads

are recorded. In addition, there is also a one-lead ECG, which enables long-term

monitoring of patients. However, only a single lead is recorded, so comprehensive

diagnostics cannot be guaranteed. Channel II is usually used for such recordings

[18]. In this work, single-lead ECGs are used because they are suitable for the

constant monitoring of a patient. In addition, the same cardiac arrhythmias can be

detected with a single-lead ECG as with photoplethysmography.

Figure 2.4: Working principle of PPG, where the dashed line indicates the light [7].

Photoplethysmography (PPG) is used to monitor the volumetric change of blood

in the microvascular bed of the tissue [7]. For this purpose, the PPG-sensor emits a

light that is re
ected or transmitted in the tissue. The functioning of the PPG-sensor

is shown in Figure 2.4.
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Here, green light is used because the wavelengths of green light are strongly ab-

sorbed by the blood. During the systolic phase of the cardiac cycle, the arteries

obtain more blood volume than in the diastolic phase and thus the change can be

recorded by PPGs [22]. The resulting PPG-waveform is shown in Figure 2.5. By

analyzing the PPG-waveforms, arrhythmias can be detected and classi�ed.

Figure 2.5: Representation of a PPG waveform, wherea represents the depolariza-
tion of atria, b represents the repolarization of ventricles, andc repre-
sents the pulse width [7].

The ECG and PPG waveforms are related to each other. The QRS-complex of

the ECG maps the contraction of the heart ventricles. Afterward, the blood is

transported through the blood vessels to di�erent body parts. Thus, the volume of

blood increases after each heartbeat. The R-spikes of the ECG represent ventricular

contraction. The systolic spikes follow the R-spikes with a certain delay (cf. Figure

2.6) because the blood needs some time to travel from the heart to the location of

the PPG measurement (often the �ngertip) [23].

2.2 Cardiac Arrhythmia

Cardiac arrhythmias occur among most people. They can be clinically relevant, but

also harmless. Moreover, they are determined based on ECG or PPG recordings.

The waveforms and distances between two R-spikes or systolic peaks are analyzed for

this. Arrhythmias are divided into those in which the centre of excitation is in the

sinus node and those which have their place of origin either in the supraventricular

area of the sinus node or in the ventricular area [25]. Heart rates are also divided
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Figure 2.6: Relationship between ECG and PPG signals. The peak in the PPG
waveform is slightly delayed compared to the peak of the ECG [24].

into those that are too fast (tachycardia) and those that are too slow (bradycardia).

Furthermore, �brillation can occur. Cardiac arrhythmia is de�ned as a pathological

heart rhythm that is not physiologically adequate. Bradycardia during sleep is

therefore not pathological, but during physical exertion it is [19].

In the following, some cardiac arrhythmias are presented that can be detected in

both single-lead ECGs and PPGs.

Premature Ventricular Contractions : Premature Ventricular Contractions

(PVC) are indicated by a wide and abnormal QRS-complex (see Graphb) in Figure

2.7). This complex occurs earlier than the expected systole in the cardiac cycle.

Additionally, there is no P-wave preceding the QRS-complex. The PVC replaces

a sinus beat and induces a delay in the next sinus beat. Thus, the RR-interval is

prolonged. Because of this delay, the next sinus beat follows the basic rhythm, with

the interval between the sinus beat that preceded the extrasystole and the next beat

equaling two RR-intervals. The extrasystoles are harmless at �rst. However, they

can cause persistent ventricular tachyarrhythmias.

PVCs can be classi�ed further. For instance, there are PVCs in bigeminy (every

second beat is a ventricular extrasystole) or couplets (two consecutive PVCs). If

there are more than 30 consecutive PVCs and the heart rate exceeds 100 beats per

minute, it is called sustained ventricular tachycardia [18].
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Premature Atrial Contraction : Premature Atrial Contractions (PAC) leads

to premature appearance of a QRS-complex, which has a normal shape. The P-

wave has a di�erent morphology compared to the Sinus-P-wave (Graphc) in Figure

2.7). Like PVCs, the extrasystole leads to a delay in the next sinus beat, which also

prolongs the RR-interval. However, in PACs, the basic rhythm is not maintained.

The interval between normal beats before and after the PAC is shorter than two

RR-intervals. PACs are also usually harmless at �rst, but they can cause sustained

supraventricular tachyarrhythmias such as atrial �brillation [18].

Ventricular Tachycardia : Ventricular tachycardia (VT) (Graph d) in Figure

2.7) can be triggered by many causes, thus it cannot be determined by a speci�c

characteristic. The heart rate of a VT is between 100 and 250 beats per minute.

Other characteristics include more than three consecutive ventricular beats, which

in turn are typi�ed by a wide QRS-complex.

VT can be further subdivided into, eg., monomorphic and polymorphic VT. In

this context, a monomorphic VT is characterized by a consistent morphology of

the QRS-complex. On the other hand, a polymorphic VT has di�erent patterned

QRS-complexes and may also have a varying rhythm [18].

A VT can be confused with supraventricular tachycardias with wide QRS-complexes.

Because VTs are potentially life-threatening, it is essential to distinguish VTs from

supraventricular tachycardias. One way is to examine the onset of tachycardia. Ir-

regular RR-intervals are indicative of a VT [19]. Furthermore, other features can

be observed on the ECG for di�erentiation. However, these will not be discussed in

detail because they are not relevant to this work.

Supraventricular Tachycardia : Supraventricular tachycardia (SVT) includes

all tachycardias originating from a circuit or focus involving the atria or atrioven-

tricular node. The term paroxysmal SVT refers to a subset of SVTs characterized

by fast, regular tachycardias with abrupt onset and termination. The term SVT is

synonymous with paroxysmal SVTs in this work. SVTs are characterized by narrow

complexes. In most cases, the P-wave is hidden in the QRS-complex and thus not

visible. In addition, an SVT is usually characterized by a short RP-interval. SVTs
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include atrial 
utter, sinus tachycardia, and atrioventricular nodal re-entrant tachy-

cardia (AVNRT) [26].

Atrial Fibrillation : Atrial �brillation (AF) belongs to SVTs. However, AV

is distinguished by an irregular rhythm, which is the reason why they are further

di�erentiated from SVTs. In AFs, the P-wave is absent and the heart rate is irregular

between 100 to 180 beats per minute. The line between the QRS-complexes is

characterized by either �brillation waves (f-waves) (Graphe) in Figure 2.7) or minor

oscillations. The f-waves are small with varying morphology and amplitudes. AF is

among the most common tachycardias [18].

Figure 2.7: ECG signals with di�erent arrhythmias. a) Normal sinus rhythm. b) Ex-

ample of a premature ventricular contraction after two normal R-peaks.

c) Typical premature atrial contraction. d) Ventricular tachycardia with

P-wave depicted by the arrows. e) Atrial �brillation with f-waves. [27].
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2.3 Topological Data Analysis

Topological data analysis (TDA) has recently gained popularity through the work of

Edelsbrunner et al. [28] and Zomorodian and Carlsson [29]. The underlying concept

is that topology and geometry provide a powerful approach to obtain qualitative in-

formation about the structure of the data [30]. Topology represents a mathematical

�eld that classi�es topological spaces. Such spaces have the same topological prop-

erties within a class, so it is possible to discover the same structures in di�erent

spaces. Through high-dimensional data, patterns can be detected with the help of

TDA.

One instrument of the TDA is persistent homology. It is a powerful tool for

calculating, investigating, and encoding multi-scale topological features [30]. With

the help of persistent homology, complicated structures can be described and are

hence used in image processing and time series analysis [31]. In the context of

arrhythmia classi�cation, persistent homology is used to characterize the shape of

ECG signals compactly. The TDA features are very robust to changes in the pattern

of the ECG signal and are not a�ected by expansion and contraction in the direction

of the time axis [13].

Figure 2.8: Persistence barcode of a 1D signal [13].

To characterize the heartbeats using persistent homology, the so-called sub-level

(or upper-level) sets �ltration can be applied to the time series. Here, the signal is

considered as a functionf de�ned in an interval I . For a given threshold� , related

components

F� = f t 2 I : f (t) � � g
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for the sub-level sets �ltration and

F � = f t 2 I : f (t) � � g

for the upper-level sets �ltration are obtained. As� increases (or decreases) some

components appear and others are merged. The evolution of the components is

encoded in a persistence barcode. In Figure 2.8 such a barcode is shown.

The start point of each interval corresponds to a value� at which a new component

is created, while the endpoint corresponds to the value� 0 at which the created

component is merged with another. Thus, the functionf is the piecewise linear

interpolation of the ECG time series [13].

Figure 2.9: Generation of a persistent barcode and Betti curve from heartbeats [13].

The persistent barcodes provide important information. However, they cannot be

used as input data for machine learning techniques because the barcode is a sparse

image and the number of components of the barcode is not constant. Consequently,

Umeda [32] presented an approach in which they derived the so-called Betti curves

from the barcodes. The Betti curve represents the number of barcodes at timem.

Formally, the Betti curve with homological dimensionk is de�ned as

� k(t) =
X

(b;d)2 dgm

w(b; d)1t2 [b;d]

where w is a weight function de�ned on � [30]. The Betti curves are calculated

and discretized on the interval bounded by the minimum and maximum of the

birth and death values of each persistent diagram. A fundamental property of

the Betti curves of one-dimensional signals is the stability concerning the temporal

reparameterization and the scaling of the signal value. This makes it possible to

generate a uniform input for classical one-dimensional convolution models and to
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