
 

 

Master-Thesis
 

 

 

 

Karlsruhe, 01.10.2022 

 

Der Vorsitzende des Prüfungsausschusses 

Prof. Dr. Heiko Körner

Name:

Thema:

Katharina Post

Classification of arrhythmias based on electrocardiograms and
photoplethysmography with deep learning

Arbeitsplatz: inovex GmbH, Karlsruhe

Referent:

Korreferent:

Abgabetermin:

Prof. Dr.-Ing. Laubenheimer

Prof. Dr. Baier

31.03.2023





Eidesstattliche Erklärung
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Zusammenfassung

Herzrhythmusstörungen sind weltweit eine der häufigsten Todesursachen. Diese

Todesfälle können vermieden werden, wenn Herzrhythmusstörungen frühzeitig

erkannt und überwacht werden. Die Elektrokardiographie ist ein wichtiges Instrument

zur Erkennung von Herzrhythmusstörungen, erfordert jedoch spezielle Geräte und

geschultes Personal. Um Ärzte bei der Elektrokardiogramm-Diagnose zu unterstützen,

wurden bereits zahlreiche Machine- und Deep-Learning-Techniken entwickelt. Diese

Techniken berücksichtigen verschiedene Aspekte wie die zu klassifizierenden Arrhyth-

mien oder die Anzahl der verwendeten Elektrokardiogramm-Kanäle. Neuerdings

wird Photoplethysmographie zunehmend als Alternative zur Überwachung der kardio-

vaskulären Gesundheit auch außerhalb des klinischen Umfelds eingesetzt. Während

einige Smart Watches bereits in der Lage sind, einzelne Arrhythmien zu erkennen,

sind die Ansätze zur Klassifizierung von multiplen Arrhythmien noch begrenzt. Das

Ziel dieser Arbeit ist die Verbesserung der Klassifizierung von multiplen Herzrhyth-

musstörungen mit Photoplethysmographie. Dabei wird der Einsatz von Transfer

Learning als eine Möglichkeit zur Verbesserung evaluiert. Dazu wird eine Mod-

ellstruktur entwickelt, die auf Elektrokardiogrammen trainiert wird. Diese vereint

Vorteile und Aspekte aus früheren Arbeiten. Eine Herausforderung dabei ist die Un-

terrepräsentation einiger Klassen in der Elektrokardiogramm-Datenbank. Dies führt

dazu, dass die entwickelte Modellarchitektur nicht die Benchmark-Ergebnisse aus

vorherigen Publikationen erreicht. Daher wird zusätzlich ein Ensemble aus mehreren

binären one-vs-all Klassifikatoren betrachtet. Das Ensemble-Modell erreicht bei der

Klassifikation von fünf Herzrythmusklassen einen F1-Score von 91%. Bei der Klassi-

fikation von Herzrhythmusstörungen auf der Basis von Photoplethysmogrammen führt

die Anwendung von Transfer Learning zu einer Verbesserung gegenüber dem Modell,

das nur auf Photoplethysmographie-Daten trainiert wurde. Die besten Ergebnisse

erzielt jedoch wieder das Ensemble-Modell mit einem F1-Score von 89%. Die Arbeit

zeigt, dass die Anwendung von Transfer Learning in der Arrhythmieklassifikation zu

Verbesserungen führen kann. Das Ensemble-Modell ist jedoch ein Ansatz, der vielver-

sprechendere Ergebnisse liefert und die Benchmark-Ergebnisse im Bereich der Klassi-

fizierung von Herzrhythmusstörungen mittels Photoplethysmographie übertrifft.
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Abstract

Cardiac arrhythmias are one of the leading causes of death worldwide. These deaths

can be prevented if arrhythmias are detected and monitored early. Electrocardiogra-

phy is a major tool for detecting arrhythmias. However, it requires specialized equip-

ment and trained personnel. Many machine learning and deep learning techniques

have been developed to help doctors diagnose electrocardiograms. These techniques

incorporate different aspects such as the number of arrhythmias to be classified or

the number of electrocardiogram channels used. More recently, photoplethysmogra-

phy has been increasingly used as an alternative for monitoring cardiovascular health

in nonclinical settings. While some smartwatches can already detect single arrhyth-

mia classes, approaches to classify multiple arrhythmias are still limited. This work

aims to improve the classification of multiple arrhythmias using photoplethysmog-

raphy. Thereby, the use of transfer learning is evaluated to improve classification

performance. For this purpose, a model structure is developed that is trained on elec-

trocardiograms. This model design combines advantages and aspects from previous

work. One challenge is the underrepresentation of some classes in the electrocardio-

gram database. As a result, the performance of the developed model architecture is

behind the benchmarks published in previous work. Therefore, an ensemble of several

binary one-vs-all classifiers is additionally considered. The ensemble model achieves

an F1-score of 91% for the classification of five arrhythmia classes on electrocar-

diography data. When classifying arrhythmias based on photoplethysmography, the

application of transfer learning leads to an increase in performance over the model

trained on photoplethysmogram data solely. However, the ensemble model again

achieves the best performance with an F1-score of 89%. The work shows that ap-

plying transfer learning to arrhythmia classification can lead to a performance gain.

However, the ensemble model is an alternative method that yields more promising

results and outperforms the benchmark results in multiclass arrhythmia classification

on photoplethysmography.
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1 Introduction

The introduction of this work begins with the motivation of why it is important

to detect and classify cardiac arrhythmias based on electrocardiograms and photo-

plethysmography. Then, the research aims are presented. Afterwards, the company

is introduced, with whose cooperation the thesis is written, and finally, an overview

of the thesis structure is given.

1.1 Motivation

According to the World Health Organization (WHO), cardiovascular diseases are

the most common non-communicable disorder worldwide, responsible for an esti-

mated 17.8 million deaths in 2017. As the UN Sustainable Development Goals aim

to reduce premature mortality from non-communicable diseases by one-third be-

fore 2030, accurate early detection systems for heart failure that can continuously

monitor individuals are required [1].

Arrhythmia is a commonly diagnosed cardiac disease caused by an irregular heart-

beat. It occurs when the electrical impulses that coordinate the heartbeat malfunc-

tion. This results in a heartbeat that is too fast or too slow, or a skipping of the

heartbeat [2]. All humans experience irregularities in their heart rate. Thus, it is

important to distinguish between different types of heartbeats. Initially, harmless

irregular beats can develop into persistent cardiac arrhythmias over time, becoming

life-threatening in the worst case. Therefore, it is important to classify the various

arrhythmias [3].

Currently, cardiac arrhythmias are usually detected after complex examinations

in the clinical environment with the help of electrocardiograms (ECGs). However,

such examinations are normally carried out when the patient notices symptoms.
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Some patients do not notice any changes even though they suffer from arrhythmias

[4]. ECGs are used as a standard in everyday clinical practice. Thus, more than

300 million ECG strips are produced worldwide every year [5], which have to be

evaluated manually by doctors. Nevertheless, not all individuals who would need

such monitoring are regularly screened for arrhythmias.

The advancement of deep learning offers new possibilities in the automatic anal-

ysis of ECG strips. Several studies have been published in recent years on the

application of machine and deep learning in the field of arrhythmia classification

[6][7][8]. Despite a meanwhile very good automatic classification capability, ECGs

are still too expensive and too impractical to obtain permanent monitoring of all

individuals.

Photoplethysmography (PPG) is a technique that has become increasingly popu-

lar in recent years. It can be used to measure the volumetric change of blood in the

microvascular bed of tissue, which correlates with the heart cycle. This produces

waveforms that are related to those from the ECG. There are already initial efforts

to use this technique for the detection of cardiac arrhythmias, as it is cheaper and

easier to use than ECGs. This technique can be found, for example, in smart devices

such as smartwatches, but can also be recorded using the mobile phone camera and

flash.

However, previous methods in this area mostly use classic machine learning ap-

proaches in order to detect abnormalities in the heart function, which are very time-

consuming due to manual feature generation [4][9]. In the last year, deep learning

has been used in some research, but the performance does not reach that of ECG

approaches yet.

To transfer the good results from ECGs to PPGs, initial efforts are being made

to apply transfer learning. For example, models are trained with ECG data, and

the last layers of the network are frozen and re-trained with PPGs afterwards. In

2021, two papers were published by Radha et al. [10] and Li et al. [11] that use

transfer learning to classify the sleep stage of individuals. The models are each

pre-trained on ECGs and then transferred to PPGs. Both find an improvement in

accuracy compared to the models trained on PPGs only. In addition, an article

published in 2021 by Ramesh et al. [12] applies transfer learning in the field of

2



arrhythmia classification. The approach aims to classify one particular type of

cardiac arrhythmia, based on the heart rate variability extracted from ECGs. Then

the final layers are re-trained with the pulse rate variability from PPGs. Since initial

successes have already been achieved with the transfer learning approach from ECGs

to PPGs, this work will examine whether a transfer learning method can likewise

achieve better results in the multiclass classification of arrhythmias.

1.2 Objective

Two primary objectives are investigated in this project.

1. How can a model for classifying cardiac arrhythmias be designed that combines

the advantages/aspects of previous publications? This question is addressed by

comparing different approaches in the literature and identifying the advantages

of each publication. In addition, the challenges and deficits of the previous

approaches are considered so that possible research gaps can be closed.

2. Does a model pre-trained with ECG data and applied to PPG data via transfer

learning achieve a better F1-score in multiclass arrhythmia classification than

a model trained on PPG data only? Therefore, the model resulting from the

first research question is transferred to PPG data. If the model achieves an

F1-score outperforming that of the model trained on PPG-only data, this can

be considered a success.

In the following, the particular steps that need to be undertaken to answer the

the first research question are specified:

• Conduction of a comprehensive literature review focusing on the classification

of cardiac arrhythmias based on ECGs and PPGs.

• Identification of advantages and important aspects in the literature.

• Identification of challenges and shortcomings of previous publications to detect

research gaps.

• Creation of a model structure and approach that combines the advantages of

previous publications.
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To answer the second research question following tasks are conducted:

• Implementation and training of the model structure developed in 1. with ECG

sequences, taking into account further aspects that are found in the answering

of the first research question.

• Implementation and training of the model with PPG data.

• Execution of transfer learning by re-training the final layers of the model

trained on ECG data on the PPG sequences.

• Comparison of the performance of the PPG-only model with the transfer learn-

ing model.

Accordingly, this work results in a model that detects and classifies cardiac ar-

rhythmias in ECGs. Various aspects regarding the advantages and disadvantages of

previous publications are to be taken into account. Exemplary aspects are the clas-

sification possibility of several arrhythmias or that the model works as well in new

patients as in subjects from the training data set. Furthermore, the transferability

of the model to PPG data must be considered.

The proposed model is based on the paper Topological Data Analysis for Arrhyth-

mia Detection Through Modular Neural Networks published in 2020 by Dindin et al.

[13]. The authors developed a modular multichannel neural network consisting of an

autoencoder, a deep convolutional neural network (DCNN), handcrafted features,

and topological data analysis (TDA). The autoencoder, as well as the topological

data analysis, are re-implemented. The structure of the DCNN is adopted to the

data used in this work. An overview of the exact model structure is given in Chapter

4.

1.3 Environment

The thesis is written in cooperation with the company inovex GmbH in Karlsruhe.

inovex is an innovation and quality-driven IT project house with a focus on digital

transformation. Approximately 500 employees at seven locations in Germany sup-

port customers from different industries in the realization of digital use cases. The

company’s portfolio includes mobile apps, robotics, backend services, cloud services,
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data science, and deep learning [14].

The focus of inovex can be divided into three fields. The Application Development

unit includes software development with backend and frontend, as well as UI/UX

design. The employees from the IT Engineering and Operations division develop

infrastructure for various projects. And the Data Management and Analytics de-

partment creates data-driven solutions using machine and deep learning methods,

as well as big data and business intelligence [14].

Furthermore, inovex is involved in several research projects and science. New

technologies are developed in the areas of Internet of Things (IoT), artificial intel-

ligence, and e-health. Within this scope, many theses are offered in the company.

Both academic questions and concrete use cases from the economy are investigated

[15]. Such work belongs to the area of inovex Lab, the central unit for research and

development [16]. This work was undertaken as part of the inovex Lab and aims to

gain further insights into the topic of e-health.

1.4 Structure

Chapter 1 provides an overview of the motivation, objectives and the working envi-

ronment of the project. Chapter 2 introduces relevant theoretical foundations in the

field of medicine and topological data analysis. Chapter 3 discusses prior research

that is relevant to this project, which is mostly research related to the automatic

classification of arrhythmias based on ECGs and PPGs. Chapter 4 describes the

methods used in the project, including the generation of the data set, the concept of

the multichannel neural network and a description of each model component. Chap-

ter 5 presents the implementation and results of the proposed network on ECG data

and the transfer to PPG data. Finally, chapter 6 discusses and summarizes the find-

ings of the thesis, describes the limitations of the methods, and gives suggestions

for further research.
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2 Theoretical Foundations

Relevant terms from the fields of medicine and informatics are presented below. The

technology of electrocardiography and photoplethysmography is outlined to create

an understanding of the differences between these two methods. In addition, cardiac

arrhythmias are introduced and some classes that will be categorized in the later

model are explained. Further, topological data analysis is delineated with a focus

on persistent homology, which can be used to obtain features for the classification

of arrhythmias.

2.1 Electrocardiography and Photoplethysmography

The most common diagnostic method for cardiac arrhythmias is the recording of

an electrocardiogram (ECG). The advantage of this method is a quick and reliable

assessment of heart function.

Figure 2.1: Cross-section of the heart – the sinus node gives the beat and thus de-
termines the heart rhythm [17].
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An ECG records the electrical activity of all heart muscle fibers. With every heart-

beat, the heart muscles change their electrical properties. These voltage changes are

measured on the patient’s body with electrodes. The resulting heart electricity curve

is called an electrocardiogram [18]. The ECG can be used to monitor the rhythm of

the heart. Each heartbeat is represented in the ECG as a waveform. Three consecu-

tive heartbeats with identical waveforms are defined as one rhythm. The similarity

of the waveforms indicates that the beat has the same origin. Normally, the sinus

node (cf. Figure 2.1) is the predominant pacemaker centre and thus the resulting

rhythm is called sinus rhythm. Other pacemakers may be, for example, parts of

the atrial myocardium or clusters of cells around the atrioventricular node. If a cell

develops pathological automaticity, extrasystoles and arrhythmias can occur [19].

Figure 2.2: Waveform of one heart beat which consists of a P-wave, a QRS-complex
and a T-wave [20].

A waveform (shown in Figure 2.2) consists of the P-wave, the QRS-complex and

the T-wave. The P-wave represents depolarisation of the atrium, the QRS-complex

indicates depolarisation and contraction of the ventricles and the T-wave denotes

repolarization of the ventricles [2]. The distance between two R-spikes is used to

calculate the heart rate. Normal sinus rhythm is characterised by regularity with a

heart rate of 50 to 100 beats per minute. In addition, the P-wave has a constant

morphology before each QRS-complex [19].

There are different types of ECGs, which differ in their number of electrodes

and leads. There are a total of twelve leads (cf. Figure 2.3), which are measured

with a sum of ten electrodes. Such an ECG is called a 12-lead ECG and is part
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Figure 2.3: Example of a 12-lead-ECG. Lead II is used in this work [21].

of standard diagnostics. For a long-term ECG (24 hours), a total of three leads

are recorded. In addition, there is also a one-lead ECG, which enables long-term

monitoring of patients. However, only a single lead is recorded, so comprehensive

diagnostics cannot be guaranteed. Channel II is usually used for such recordings

[18]. In this work, single-lead ECGs are used because they are suitable for the

constant monitoring of a patient. In addition, the same cardiac arrhythmias can be

detected with a single-lead ECG as with photoplethysmography.

Figure 2.4: Working principle of PPG, where the dashed line indicates the light [7].

Photoplethysmography (PPG) is used to monitor the volumetric change of blood

in the microvascular bed of the tissue [7]. For this purpose, the PPG-sensor emits a

light that is reflected or transmitted in the tissue. The functioning of the PPG-sensor

is shown in Figure 2.4.
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Here, green light is used because the wavelengths of green light are strongly ab-

sorbed by the blood. During the systolic phase of the cardiac cycle, the arteries

obtain more blood volume than in the diastolic phase and thus the change can be

recorded by PPGs [22]. The resulting PPG-waveform is shown in Figure 2.5. By

analyzing the PPG-waveforms, arrhythmias can be detected and classified.

Figure 2.5: Representation of a PPG waveform, where a represents the depolariza-
tion of atria, b represents the repolarization of ventricles, and c repre-
sents the pulse width [7].

The ECG and PPG waveforms are related to each other. The QRS-complex of

the ECG maps the contraction of the heart ventricles. Afterward, the blood is

transported through the blood vessels to different body parts. Thus, the volume of

blood increases after each heartbeat. The R-spikes of the ECG represent ventricular

contraction. The systolic spikes follow the R-spikes with a certain delay (cf. Figure

2.6) because the blood needs some time to travel from the heart to the location of

the PPG measurement (often the fingertip) [23].

2.2 Cardiac Arrhythmia

Cardiac arrhythmias occur among most people. They can be clinically relevant, but

also harmless. Moreover, they are determined based on ECG or PPG recordings.

The waveforms and distances between two R-spikes or systolic peaks are analyzed for

this. Arrhythmias are divided into those in which the centre of excitation is in the

sinus node and those which have their place of origin either in the supraventricular

area of the sinus node or in the ventricular area [25]. Heart rates are also divided
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Figure 2.6: Relationship between ECG and PPG signals. The peak in the PPG
waveform is slightly delayed compared to the peak of the ECG [24].

into those that are too fast (tachycardia) and those that are too slow (bradycardia).

Furthermore, fibrillation can occur. Cardiac arrhythmia is defined as a pathological

heart rhythm that is not physiologically adequate. Bradycardia during sleep is

therefore not pathological, but during physical exertion it is [19].

In the following, some cardiac arrhythmias are presented that can be detected in

both single-lead ECGs and PPGs.

Premature Ventricular Contractions: Premature Ventricular Contractions

(PVC) are indicated by a wide and abnormal QRS-complex (see Graph b) in Figure

2.7). This complex occurs earlier than the expected systole in the cardiac cycle.

Additionally, there is no P-wave preceding the QRS-complex. The PVC replaces

a sinus beat and induces a delay in the next sinus beat. Thus, the RR-interval is

prolonged. Because of this delay, the next sinus beat follows the basic rhythm, with

the interval between the sinus beat that preceded the extrasystole and the next beat

equaling two RR-intervals. The extrasystoles are harmless at first. However, they

can cause persistent ventricular tachyarrhythmias.

PVCs can be classified further. For instance, there are PVCs in bigeminy (every

second beat is a ventricular extrasystole) or couplets (two consecutive PVCs). If

there are more than 30 consecutive PVCs and the heart rate exceeds 100 beats per

minute, it is called sustained ventricular tachycardia [18].
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Premature Atrial Contraction: Premature Atrial Contractions (PAC) leads

to premature appearance of a QRS-complex, which has a normal shape. The P-

wave has a different morphology compared to the Sinus-P-wave (Graph c) in Figure

2.7). Like PVCs, the extrasystole leads to a delay in the next sinus beat, which also

prolongs the RR-interval. However, in PACs, the basic rhythm is not maintained.

The interval between normal beats before and after the PAC is shorter than two

RR-intervals. PACs are also usually harmless at first, but they can cause sustained

supraventricular tachyarrhythmias such as atrial fibrillation [18].

Ventricular Tachycardia: Ventricular tachycardia (VT) (Graph d) in Figure

2.7) can be triggered by many causes, thus it cannot be determined by a specific

characteristic. The heart rate of a VT is between 100 and 250 beats per minute.

Other characteristics include more than three consecutive ventricular beats, which

in turn are typified by a wide QRS-complex.

VT can be further subdivided into, eg., monomorphic and polymorphic VT. In

this context, a monomorphic VT is characterized by a consistent morphology of

the QRS-complex. On the other hand, a polymorphic VT has different patterned

QRS-complexes and may also have a varying rhythm [18].

A VT can be confused with supraventricular tachycardias with wide QRS-complexes.

Because VTs are potentially life-threatening, it is essential to distinguish VTs from

supraventricular tachycardias. One way is to examine the onset of tachycardia. Ir-

regular RR-intervals are indicative of a VT [19]. Furthermore, other features can

be observed on the ECG for differentiation. However, these will not be discussed in

detail because they are not relevant to this work.

Supraventricular Tachycardia: Supraventricular tachycardia (SVT) includes

all tachycardias originating from a circuit or focus involving the atria or atrioven-

tricular node. The term paroxysmal SVT refers to a subset of SVTs characterized

by fast, regular tachycardias with abrupt onset and termination. The term SVT is

synonymous with paroxysmal SVTs in this work. SVTs are characterized by narrow

complexes. In most cases, the P-wave is hidden in the QRS-complex and thus not

visible. In addition, an SVT is usually characterized by a short RP-interval. SVTs

12



include atrial flutter, sinus tachycardia, and atrioventricular nodal re-entrant tachy-

cardia (AVNRT) [26].

Atrial Fibrillation: Atrial fibrillation (AF) belongs to SVTs. However, AV

is distinguished by an irregular rhythm, which is the reason why they are further

differentiated from SVTs. In AFs, the P-wave is absent and the heart rate is irregular

between 100 to 180 beats per minute. The line between the QRS-complexes is

characterized by either fibrillation waves (f-waves) (Graph e) in Figure 2.7) or minor

oscillations. The f-waves are small with varying morphology and amplitudes. AF is

among the most common tachycardias [18].

Figure 2.7: ECG signals with different arrhythmias. a) Normal sinus rhythm. b) Ex-

ample of a premature ventricular contraction after two normal R-peaks.

c) Typical premature atrial contraction. d) Ventricular tachycardia with

P-wave depicted by the arrows. e) Atrial fibrillation with f-waves. [27].
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2.3 Topological Data Analysis

Topological data analysis (TDA) has recently gained popularity through the work of

Edelsbrunner et al. [28] and Zomorodian and Carlsson [29]. The underlying concept

is that topology and geometry provide a powerful approach to obtain qualitative in-

formation about the structure of the data [30]. Topology represents a mathematical

field that classifies topological spaces. Such spaces have the same topological prop-

erties within a class, so it is possible to discover the same structures in different

spaces. Through high-dimensional data, patterns can be detected with the help of

TDA.

One instrument of the TDA is persistent homology. It is a powerful tool for

calculating, investigating, and encoding multi-scale topological features [30]. With

the help of persistent homology, complicated structures can be described and are

hence used in image processing and time series analysis [31]. In the context of

arrhythmia classification, persistent homology is used to characterize the shape of

ECG signals compactly. The TDA features are very robust to changes in the pattern

of the ECG signal and are not affected by expansion and contraction in the direction

of the time axis [13].

Figure 2.8: Persistence barcode of a 1D signal [13].

To characterize the heartbeats using persistent homology, the so-called sub-level

(or upper-level) sets filtration can be applied to the time series. Here, the signal is

considered as a function f defined in an interval I. For a given threshold α, related

components

Fα = {t ∈ I : f(t) ≤ α}
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for the sub-level sets filtration and

Fα = {t ∈ I : f(t) ≥ α}

for the upper-level sets filtration are obtained. As α increases (or decreases) some

components appear and others are merged. The evolution of the components is

encoded in a persistence barcode. In Figure 2.8 such a barcode is shown.

The start point of each interval corresponds to a value α at which a new component

is created, while the endpoint corresponds to the value α′ at which the created

component is merged with another. Thus, the function f is the piecewise linear

interpolation of the ECG time series [13].

Figure 2.9: Generation of a persistent barcode and Betti curve from heartbeats [13].

The persistent barcodes provide important information. However, they cannot be

used as input data for machine learning techniques because the barcode is a sparse

image and the number of components of the barcode is not constant. Consequently,

Umeda [32] presented an approach in which they derived the so-called Betti curves

from the barcodes. The Betti curve represents the number of barcodes at time m.

Formally, the Betti curve with homological dimension k is defined as

βk(t) =
∑

(b,d)∈dgm

w(b, d)1t∈[b,d]

where w is a weight function defined on ∆ [30]. The Betti curves are calculated

and discretized on the interval bounded by the minimum and maximum of the

birth and death values of each persistent diagram. A fundamental property of

the Betti curves of one-dimensional signals is the stability concerning the temporal

reparameterization and the scaling of the signal value. This makes it possible to

generate a uniform input for classical one-dimensional convolution models and to
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solve individual differences. Because persistence intervals measure the relative height

of the peaks of the signal and not the width, the invariance to time scaling is

guaranteed [13]. Figure 2.9 shows the process of barcode generation from three

consecutive heartbeats and the subsequent retrieval of the Betti curve.
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3 State of the Art

In the following, the current State of the Art in arrhythmia detection and classifi-

cation based on ECGs and PPGs is reviewed. Different prerequisites of the various

approaches are explained and thus, a sorting of the methods is undertaken. In

addition, an overview of frequently used data sets is given.

Data-driven identification and classification of arrhythmias are primarily based

on the analysis of ECGs and PPGs (cf. Section 2.1). In 2021, Neha et al. [7]

gathered the results from various papers published in the past on the classification

of arrhythmias. In the process, they also examined the number of articles that use

ECG and PPG sensors to classify arrhythmias. In 2021, 1209 publications use ECG

data and 109 papers are based on PPGs. This can be explained by the fact that

PPGs have gained popularity within the last few years. Especially the development

of semiconductor technology, i.e. light-emitting diodes (LED) and photodiodes, has

significantly improved the reliability of the technology [23].

The individual approaches can be subdivided based on the technological prerequi-

sites. For ECGs, a distinction is made between single-lead sensors and multiple-lead

sensors. Most publications use single-lead sensors (812). Furthermore, the publica-

tions can be grouped by the number of classified labels. Some approaches examine

the recordings for a specific cardiac arrhythmia. Other approaches perform a multi-

class classification. In addition, there are also differences in the methodology used.

Older approaches particularly use descriptive statistics or classic machine learning

models. Newer approaches, on the other hand, often use deep learning, which enables

them to achieve automatic feature generation. In addition, there are performance

differences in some approaches, as the models created are partly tuned to patients

and do not work for new individuals. The suggested classification of the different

concepts from the literature can be seen in Figure 3.1.
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Figure 3.1: Different aspects and factors of the methods for arrhythmia classification
presented in previous work. Publications are divided into measurement
technique, patient selection, number of labels and classification methods.

In the following, first several existing data sets are introduced and afterwards the

individual classification differences are discussed in more detail and existing work is

presented.

3.1 Data Sets

There are several data sets that contain cardiac records. In the following, some of

these data sets are presented and the advantages and disadvantages are highlighted.

The most commonly used database is the PhysioNet database. It was initiated

by the Massachusetts Institute of Technology and contains data from Beth Israel

Hospital (MIT-BIH). Since 1999, it has provided free access to ECG and PPG

arrhythmia data, among others. The ECG arrhythmia data contained in the MIT-

BIH Arrhythmia Database includes 48 data sets from 47 subjects. The frequency of

the signals is 360 Hz. The majority of the signals are acquired from lead II. Others

from leads V2, V4, or V5. In addition, the database contains PPG signals found in

the MIMIC-II and Challenge 2015 and 2017 data sets. Furthermore, there is one

ECG signal per PPG signal. The signals are sampled at a frequency of 125 Hz.

The PPG recordings are not labeled but can be assigned a label using the ECG

data. The labels included are listed in Table 3.1. Heartbeats are divided into five
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supercategories and then specified in more detail in subcategories [7]. In addition,

there is a normal sinus rhythm data set (MIT-BIH Normal Sinus Rhythm Database),

which contains 18 long-term ECGs. To complement the supraventricular arrhythmia

data in the arrhythmia database, there is the MIT-BIH Supraventricular Arrhythmia

Database with 78 half-hour ECG recordings and the MIT-BIH malignant ventricular

ectopy database.

Group Symbol Class

N N ou. Normal beat
any heartbeat not L Left bundle branch block beat
in other group R Right bundle branch block beat

e Atrial escape beat
j Nodal (junctional) escape beat

SVEB A Atrial premature beat
supraventricular a Aberrated atrial premature beat
ectopic beat J Nodal (junctional) premature beat

S Supraventricular premature beat
VEB PVC Premature ventricular contraction
ventricular E Ventricular escape beat
ectopic beat
F F Fusion of ventricular and normal beat
fusion beat
Q P ou/ Paced beat
Unknown beat f Fusion of paced and normal beat

U Unclassified beat

Table 3.1: Principle types of heartbeats presented in the MIT-BIH database [8].

The American Heart Association (AHA) generated a database of eight arrhythmia

classes and normal sinus rhythm from more than 6300 hospitals and 400 health

systems. The signals are 12-lead ECGs sampled to 250 Hz. However, the database

is not publicly available and does not contain PPG data [7].

A database for multichannel ECGs is the UCI Arrhythmia Database. The data is

from 1998 and contains ECG signals from 452 instances. There are 16 heart rhythm

classes and additional patient information such as age, gender, height, and weight.

Associated PPG records are not available.
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A European community created a database in 1985 known as the European ST-T

Database. The database contains 90 annotated ECG recordings from 79 patients.

Two channels are documented at the time of recording. The database only records

ST and T-wave changes (cf. Figure 2.2) and also does not contain PPG data [7].

A PPG data set was developed by Liu et al. [4] in the context of their publication

Multiclass Arrhythmia Detection and Classification From Photoplethysmography Sig-

nals Using a Deep Convolutional Neural Network. They recorded 118,217 PPGs of

ten seconds each from a total of 228 patients. There are six classes of arrhythmia:

sinus rhythm, PVC, PAC, VT, SVT, and AF. In total, there are 38,081 labelled

sinus rhythms, 11,372 PVC, 11,248 PAC, 5783 VT, 12,539 SVT and 39,194 AF.

PPG data are downsampled to 100 Hz. 60% of patients are randomly assigned to

the training set. This corresponds to 137 patients and 71,390 segments. For vali-

dation and testing, 20% of the data are used respectively. This equals 46 and 45

patients with 23,443 and 23,384 PPG segments. The training data are not publicly

available. However, validation and test data sets are made available, giving a data

set of 46,827 signals.

3.2 Classification with Electrocardiography

As explained in the introduction of this chapter, single-lead ECGs or multi-lead

ECGs can be used to classify arrhythmias. Single-lead ECGs allow constant moni-

toring of a patient because, in contrast to multi-lead ECGs, one device is sufficient

to generate an ECG. The disadvantage, however, is that not all cardiac arrhythmias

can be detected with a single-lead ECG.

Rahhal et al. [33] introduced a publication based on multi-lead ECGs and use

stack denoising autoencoders (SDAEs) to learn feature representations from ECG

data. After the feature learning phase, the authors add a Softmax regression layer

on top of the resulting hidden representation layer, creating a deep neural network

(DNN). During the interaction phase, an expert labels each iteration’s most impor-

tant and uncertain ECG beats. These are then used to update the DNN weights.

The MIT-BIH Arrhythmia and SVBD data sets, which contain two leads, and the

INCART data set, which has 12 leads, are used as the data set (cf. Section 3.1).
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Rahhal et al. present the results in the form of (class PVC to [normal beat, S,

and F]) and (class S to [normal beat, PVC, and F]). The authors achieve an overall

accuracy of 98% (MIT-BIH and SVDB) and 99% (INCART). A major disadvantage

of the approach is the time-consuming manual labeling of an expert.

Irfan et al. [34] solved the problem and developed a deep learning framework

that integrates different networks by stacking similar layers in each network. The

network are tested on two data sets: The UCI Arrhythmia data set and the MIT-BIH

Arrhythmia data set (cf. Section 3.1). Several ECG-leads of the data are used and

it is a multiclass approach. The presented framework reaches an accuracy of 99.35%

in the classification of five arrhythmia subclasses (N, L, R, A, and V). Despite the

partial inaccuracy of single-lead ECGs, they are better suited for monitoring many

patients in an ambulatory setting. Moreover, the classification possibilities of single-

lead ECGs are the same as those of PPGs. For this reason, this work focuses on

single-lead ECG approaches.

Different types, but also different numbers of arrhythmias are classified in several

publications. For example, while Rahhal et al. [33] performed two binary classifi-

cations, Irfan et al. [34] categorize five sub-classes of arrhythmias in a multiclass

environment. In some applications, it is convenient to perform binary/one-class

classification. For example, Zhang et al. [35] classify atrial fibrillation. This is

useful because some individuals do not notice irregular and rapid heartbeats. How-

ever, atrial fibrillation can lead to stroke, making detection necessary. Nonetheless,

there are high risks associated with other arrhythmias as well, making a multiclass

classification preferable. Therefore, the focus of the following work is on multiclass

classification.

Previously, mainly machine-learning-based methods are used for arrhythmia clas-

sification. A major disadvantage of such approaches is the need for manual feature

recognition, complex models, and long training times [36]. In addition, heartbeats

can have different morphologies even within the same patient, which are difficult to

capture with hand-crafted features [37]. Automatic feature engineering built into

deep learning can capture these different morphologies invisible to the human eye

[38]. Therefore, deep learning has become increasingly attractive in recent years,

as it obviates the need for manual feature recognition. A study on the use of deep

learning was published by Wu et al. [36] in 2021. The authors present a 12-layer
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deep one-dimensional convolutional neural network (CNN) to categorize five micro-

classes. They use the MIT-BIH Arrhythmia database. All heartbeats from one

channel are extracted individually. The ECG signals are denoised using the wavelet

transform method. The wavelet transform is an algorithm that decomposes non-

stationary signals into scale signals of different frequency bands. Finally, the pre-

processed ECG signals are fed into the CNN and a class is determined. The network

achieves an accuracy of 97.41%.

Rahman et al. [3] presented an approach in 2022 whereby they use transfer

learning to categorize five arrhythmia classes. They compare three models: ResNet,

SqueezeNet, and AlexNet. The data set published on Kaggle, which in turn is

based on the MIT-BIH Arrhythmia data set, serves as the data basis. The data are

additionally augmented to increase the number of images in the data set. In addition,

the data has been preprocessed before being passed on to the three models. Several

layers are reused and the last three layers are re-trained. The ResNet achieves an

accuracy of 97%, the SqueezeNet 75%, and the AlexNet 96%.

The two previously presented approaches (Wu et al. [36] and Rahman et al.

[3]) carry out extensive preprocessing steps. These are time-consuming and costly.

Hannun et al. [5] provided a deep learning model that does not require any sub-

stantial preprocessing such as wavelet transform or equivalent. With their model,

they achieve a performance similar to cardiologists. The single-lead ECGs can be

classified into twelve categories. Thereby Hannun et al. [5] stand out in terms of

the number of labels compared to other publications. The authors also created their

own data set consisting of 91,232 ECG records from 53,549 patients. The model

achieves an average area under the receiver operating characteristic curve (ROC)

of 0.97. The CNN consists of 34 layers and accepts raw ECG data as input. The

model is tested on the 2017 PhysioNet Challenge data. It achieves an F1-score of

0.83 and is thus among the best performers in the PhysioNet Challenge. Despite

the generalizability of the model, differences between individuals are not explicitly

addressed. The model could perform worse on data from new subjects.

Therefore, in 2018 Mousavi and Afghah [39] developed a concept for the inter-

and intra-patient heartbeat classification. They also make use of the MIT-BIH ar-

rhythmia data set. Channel II of the ECG is selected. The intra-patient approach

combines training and evaluation data from the same patients. In contrast, the eval-
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uation data set is retrieved from new patients in the inter-patient approach. This

makes the model more suited to reality, where data from new patients is classified

using the existing model. In addition, the authors address the challenge of imbal-

anced data. There are underrepresented classes in the data sets. Thus, Mousavi

and Afghah developed a sequence-to-sequence deep learning model and an over-

sampling method called Synthetic Minority Over-sampling Technique (SMOTE).

First, preprocessing is done to extract individual heartbeats. Then the preprocessed

heartbeats are fed into a CNN. Afterwards, the results of the CNN are used as the

input to a RNN sequence to sequence model. The sequence to sequence model is de-

signed based on the encoder-decoder idea. The encoder encodes the input sequence,

while the decoder computes the category of each input. When testing the intra-

patient concept, training and test data are randomly selected. In the inter-patient

approach, however, the data is split based on the patients, whereby only ECGs from

patients who do not appear in the training data are used for the test data. The

model achieves an accuracy of 99.92% in the intra-patient setting and 99.53% in the

inter-patient scenario. The complexity in Mousavi and Afghah’s work is to generate

synthetic data using SMOTE to compensate for minority classes. In reality, this

can lead to difficulties due to the above-average representation of sinus rhythm. An

approach that deals with imbalanced data differently and also take the variations

between individuals into account was presented by Dindin et al. [13] in 2020.

Dindin et al. [13] present an approach that classifies different arrhythmias and

performs well in new patients. They use a multichannel neural network and com-

bine topological data analysis, handcrafted features, and deep learning. At the

same time, they address the challenge of unbalanced data. The available train-

ing data for sinus rhythm is higher than for arrhythmias. The authors use several

data sets from the Physionet platform. Among them are MIT-BIH Normal Sinus

Rhythm Database, MIT-BIH Arrhythmia Database, and MIT-BIH Supraventricular

Arrhythmia Database. Among the data, one lead of the ECG recordings is used.

The first step is to create an autoencoder that learns sinus rhythm using unsu-

pervised learning. The autoencoder can then be used to classify the data in binary

terms. Afterwards, data points labeled as abnormal are classified in a second step.

Betti curves (cf. Section 2.3) are generated using topological data analysis, which

compensates for individual differences in the data and thus makes the model usable
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for new patients. In addition, the ECG signal is processed in a CNN. Together with

handcrafted features and discrete Fast Fourier Transform, the data is labeled. The

model structure is shown in Figure 3.2. The authors achieve an accuracy of 90% on

the test data set for the detection of arrhythmias (autoencoder). For the classifica-

tion of 13 classes, an accuracy of 80.5% is achieved. In addition, the approach is

tested with eight classes used in other papers. The model has an accuracy of 99%

when classifying eight arrhythmias.

Figure 3.2: Model structure presented by Dindin et al. [13]. They created a multi-
channel neural network which consists out of an autoencoder, the gener-
ation of Betti curves that are further processed in convolutional layers,
handcrafted features, discrete fast fourier transform and convolutional
layers that are processing the ECG signal itself.

In their paper, the authors present the autoencoder and the Betti curves in more

detail. However, it is not possible to retrieve more information about the handcrafted

features that influence the accuracy. Besides, the creation of handcrafted features is

time-consuming, so an approach without feature generation should be considered.

3.3 Classification with Photoplethysmography

The trend of wearable devices has also increased the demand for wearable sensors

that can permanently monitor heart rhythm. PPG is a suitable solution because it

is inexpensive, non-invasive, and does not require a large number of electrodes to be

reattached after a while. In 2021, Neha et al. [7] concluded that previous classifica-

tion methods focus on binary class classification. An example of such a method was

presented by Polania et al. [9]. The authors classify PVC and VT from normal sinus
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rhythm and SVT. They first developed a preprocessing stage. Then discriminative

features are extracted and used as input to a Support Vector Machine (SVM). The

extracted features originate from the time-domain and frequency-domain context.

In addition, non-linear dynamics are explored. For all cases, high accuracies above

90% are achieved. Nevertheless, there is a need to develop methods for multiclass

classification. The same conclusion was drawn by Neha et al. [7].

In the last year, work on the multiclass classification of arrhythmias has been

made. For example, Neha et al. [40] use dynamic time warping (DTW) to de-

tect four arrhythmia classes in PPGs. Automatically generated warping features

are extracted through DTW. Subsequently, the classification is carried out with a

feed-forward neural network. The PhysioNet MIMIC-II data set serves as the data

basis. The class distribution of the data set is unbalanced. There are 400 nor-

mal PPG signals and 90 signals for PVC, VT, and AF respectively. The authors

first implemented the preprocessing. Besides removing the outliers, a second-order

Butterworth low pass filter is applied. Moreover, the signals are normalized. Then

DTW is used for feature extraction. In this process, warping features are deter-

mined by mapping two PPG signals and calculating the optimal warping path. For

arrhythmia detection, a normal PPG signal is warped with an arrhythmic signal.

These changes in the optimal warping paths observed when mapping normal-normal

PPG signals and normal-abnormal PPG signals are used to identify the arrhythmia

type. The resulting features are passed to a neural network. The network consists of

three hidden layers, whereby the first two layers consist of 100 neurons and the last

layer contains 50 neurons. Three arrhythmia types and sinus rhythm are classified.

The method achieves an accuracy of 95.97%. Manual feature extraction increases

the workload and makes the model more complex. Therefore, it is reasonable to use

deep learning.

An approach using deep learning to classify multiple arrhythmias was presented

by Liu et al. [4] in 2022. They developed a deep convolutional neural network

(DCNN) to classify six types of rhythms. First, they prepare the data by performing

down-sampling, denoising, segmentation, and normalization. The DCNN is based

on the VGGNet-16 architecture. It is adapted to be suitable for one-dimensional

input signals. A self-made data set serves as the database. The PPG recordings of

228 patients are divided into ten-second segments. This produced a data set with

25



118,217 recordings. The following rhythms are recorded: sinus rhythm, PVC, PAC,

VT, SVT, and AF. The data set is randomly divided into independent training,

validation, and test data. Only signals from patients not present in the training

data are used in the test data. The proposed method is therefore an inter-patient

approach. The model achieves an accuracy of 85%. By contrast, Neha et al. [40]

reach an accuracy of 95.97% for four classes on PPG data. The model offers potential

for improvement in terms of performance.

In this work, the advantages of the presented publications are combined. A model

is developed that can classify several types of arrhythmia by using deep learning on

single-channel ECGs. An inter-patient approach is followed so that the model can

also be transferred to new patients. At this point, TDA is suitable because individual

differences are already taken into account when feeding the model. The finished

model is then transferred to PPGs. The aim here is to develop a multiclass deep

learning PPG approach that takes into account differences in patients and requires

minimal manual feature engineering effort. The exact procedure and structure of

the model are described in the following chapter.
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4 Methodology

Based on the fundamentals and findings described in the State of the Art chapter,

this chapter outlines the requirements for the model to be developed, the data

selection and the system design. Finally, two further approaches are presented,

which are evaluated in this work: The use of transfer learning and an ensemble of

multiple binary classifiers.

The system is designed with the research questions under consideration. Firstly,

an approach that includes and combines all aspects of previous systems is developed.

In addition, the system is designed to be transferable to PPG sequences. The

following aspects are addressed:

• The model can receive and process ECG and PPG signals.

• The system is designed to be trained on ECG sequences and fine-tuned on

PPG sequences.

• Transferability to new patients is taken into account. This is achieved by using

topological data analysis and ensuring good performance on new patients by

dividing patients into training and testing.

• The input sequences are second-long signals and are not elaborately prepro-

cessed. This is because the used PPG sequences do not have peak markers

and labels are for the entire series. Thus, preprocessing steps to center the

peaks cannot be implemented. In addition, detection in second-long segments

is more practical for future applications in smart devices.

• Deep learning is used. This is because heartbeats can have different morpholo-

gies even within the same patient and the automatic feature engineering is able

to capture these differences.

• The system design should incorporate the findings of the paper by Dindin et
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al. [13]. The modular multichannel approach should be emphasized.

• The system is designed to accept single-channel ECG data as well as data from

reflective PPG sensors.

• Multiple heartbeats and rhythms should be classifiable. The focus is on the

classes present in the PPG data.

In the following, the data selection and the preprocessing are discussed.

4.1 Data Selection and Preparation

This work aims to develop a classification system for multiple arrhythmias in ECG

and PPG data. The focus of the work is on single-lead ECGs, as they are more

extensively available than multi-lead ECG databases. In Section 3.1, various single-

lead ECG databases are reviewed, including the MIT-BIH Normal Sinus Rhythm

Database, the MIT-BIH Arrhythmia Database, and the MIT-BIH Malignant Ven-

tricular Ectopy Database. These databases are used to obtain sequences of normal

sinus rhythm, different types of arrhythmias, and underrepresented arrhythmias such

as PVC and SVT.

Reflective PPG data is a commonly used acquisition technique, and therefore this

work focuses on the classification of multiple arrhythmias in reflective PPG data.

Due to the limited availability of labeled PPG data, the publicly available validation

and test data from the Liu et al. [4] publication are selected for our analysis. Whilst

research on single-class classification with PPGs is well established, the objective of

this work is the multiclass classification. However, the relatively few different labeled

classes in the PPG data limit this study. Therefore, the ECG model is trained with

the classes that occur in the PPG data, namely N, PVC, PAC, VT and SVT. Some

of these classes are underrepresented in the otherwise large database of ECGs.

The ECG sequences are prepared by filtering out pacemaker-triggered sections.

In addition only lead II is used, so corresponding sequences from patients in whom

other leads are recorded are removed. This results in data from 86 patients, with

sequences of different frequencies due to acquisition from different databases. All

data are thus resampled to 360 Hz.
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The ECG database contains labels for each heartbeat, with the label positioned

at the peak of the ECG waveform. Labels are extended to all associated data points.

The ECG data consists of a signal resampled to 360 Hz, a heartbeat label, and a

rhythm label for each data point, with each signal having a duration of 30 minutes.

For this study, the signals are segmented into non-overlapping two-second se-

quences to generate input samples for the model. After applying the detrend func-

tion from the SciPy package, the signals are scaled between zero and one using the

scikit-learn min-max preprocessing package. Scaling between minus one and one

is also tested, but yield worse results. The label of a sequence is determined by

examining all unique values from the list of all labels occurring in the two-second

signal. Only sequences corresponding to the classes N, VT, SVT, PVC, and PAC

are retained for this study. The decision to use two-second sequences is based on an

assessment of peak occurrence and the number of data per class to ensure a suffi-

cient number of samples per class. At least three consecutive heartbeats of the same

class are required to define a rhythm. This definition of heart rhythm is considered

when choosing the number of peaks that should occur in a sequence. Due to the

different heart rates of the patients, the data does not always contain three peaks.

Nevertheless, by using two-second segments, there are an average of three peaks per

sequence.

2722
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VT (ventricular tachycardia)
PVC (premature ventricular contraction)
SVT (supraventricular contraction)
PAC (premature atrial contraction)

ECG PPG

Figure 4.1: Number of total ECG (left) and PPG (right) two-second samples. The
total number of ECG samples is lower than the number of PPG samples.

In this work PPG data from 91 patients that have already been preprocessed and

normalized by Liu et al. [4] is used. The authors segmented the PPG signals into
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ten-second sequences, which were labeled based on ECG data recorded in parallel

and classified by two physicians. In this work the sequences are resampled from 100

Hz to 360 Hz and divided into two-second sequences.

This work takes an inter-patient approach and separates the data by the patients.

Training data consists of 80% of the patients, while the remaining 20% serves as

test data. The approach is implemented to ensure that the patient-specific ECG

morphology [41] is captured and the model works correctly with new patients. The

data set includes ECG data from 86 patients and PPG data from 91 patients, re-

sulting in a training data set of 69 and 73 patients, respectively, and a test data set

of 17 and 18 patients. Figure 4.1 shows the number of samples per class, excluding

class N due to its overrepresentation. The sinus rhythm is represented by 672,141

ECG samples and 77,755 PPG samples.

4.2 System Design

This work addresses the first research question by extending previous approaches

to detect arrhythmias from ECG and PPG signals using a two-stage deep learning

model (cf. Figure 4.2). The model is designed to identify normal and abnormal

rhythms and subsequently classify the abnormal signals into various arrhythmia

classes. The model components are chosen based on the publication by Dindin et

al. [13]. However, the division into two separate networks and the architectures

of the models differ from their approach, allowing to classify normal and abnormal

signals before processing further the abnormal signals. This separation has the

advantage that sequences labeled as normal are not processed further, thus saving

computing power.

The present work uses an autoencoder to distinguish between normal and abnor-

mal sequences. The anomalous signals are further handled by a two-channel network

consisting of a Betti-CNN and a CNN. The Betti-CNN generates two Betti curves

from the input signal, which are then processed through convolutional layers. The

CNN operates directly on the signal without any prior processing.

This work combines the latter two models into a multichannel framework. Unlike

the ensemble model, where multiple models are trained to predict a single class,
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Figure 4.2: Architecture of the proposed model. Network 1 is pre-trained on normal
sinus rhythms. Afterward, the network weights are frozen. Each input
then passes through the first network. If the reconstruction error is
greater than a threshold, this indicates an arrhythmia and the input is
processed further in the second network. Otherwise it is classified as
sinus rhythm.

the multichannel model creates different input channels that are part of a single

model. Each input channel corresponds to a different aspect or type of input data

that is processed by different parts of the model. The different input channels

are combined at varying stages of the model to generate a common prediction.

Specifically, this work combines information from Betti curves with information

from raw ECG or PPG signals. In contrast, the ensemble model involves training

multiple models with different parameter settings while the input to the network

remains constant. Each model generates its prediction before a final prediction is

selected using various techniques. This type of model is also evaluated in this work,

along with the multichannel approach integrated into the overall model architecture.

The details of this ensemble model are presented in Section 4.4. The individual

components of the model structure are described in more detail in the following.

The two-step model architecture starts with an autoencoder network that distin-

guishes between normal and abnormal heartbeats and -rhythms. The separation of

the model from the rest of the model architecture is a response to the challenge of
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an imbalanced data set. Due to the prevalence of sinusoidal rhythms, there are more

normal training samples, which are used to train the autoencoder in an unsupervised

manner [13]. The model is trained on normal sinus rhythm to learn its structure.

During training, the input signal is converted into a low-dimensional representation.

The original signal is then reconstructed from this representation. The differences

between input and output are minimized using the mean squared error as the loss

function.

After training, the weights of the model are frozen. If an abnormal rhythm is

introduced into the network during inference, the model is not able to reconstruct

it well and the reconstruction error is larger than for normal sequences. The mean

squared error is chosen to take greater account of larger errors. This penalizes

erroneous reconstructions of peaks in the ECG data. To distinguish between normal

and abnormal sequences, a dynamic threshold based on the loss distributions of

normal and abnormal samples is used. This threshold is determined by identifying

the point of intersection of the loss distribution of normal and abnormal sequences.

Any sample with a reconstruction error below this threshold is classified as normal,

while others above are considered abnormal. Samples classified as abnormal are

processed further in the second network.

The second step of the approach involves a two-channel network. The first chan-

nel, the Betti-CNN, generates two Betti curves, which are processed in convolutional

layers. The two generated curves each of size 128 represent the upper/lower set fil-

tration (cf. Section 2.3). Each of these curves are further processed in parallel

in an one-dimensional CNN. The second channel digests the signal directly in an

one-dimensional CNN. After applying global average pooling to both channels re-

spectively, they are concatenated and further processed in fully connected layers to

determine the arrhythmia class. It should be noted that due to possible misclassi-

fications of regular sinus rhythms in the first stage, they must also be considered

as a label in the second network. The purpose of the combination of the two chan-

nels is to extract features from both models which will be critical for classification.

In addition, models that tend to overfit can be compensated. Each model of the

second step is implemented and tested individually before being combined to the

multichannel network.
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4.3 Transfer Learning

The proposed model structure is designed to accept both ECG and PPG signals as

input data. In addition to developing separate models for each data type, trans-

fer learning (TL) techniques are also explored. The aim is to learn features from

ECG samples to subsequently transfer the generated knowledge to PPGs. As the

waveforms of the ECGs and PPGs are related to each other, the PPG models take

advantage of the previously learned features. The relationship between the two

waveforms has already been discussed in Section 2.1. Before applying TL to the

multichannel model, TL is applied separately to each model component for better

evaluation. In addition, each model is also trained on PPG data only to get reference

results.

There are several TL approaches involving freezing or fine-tuning the weights of

individual steps based on the similarity of the data and the amount of data available.

Freezing refers to maintaining the weights of the model during training, while fine-

tuning allows the weights to be adjusted. Depending on the similarity and amount

of data, individual levels can be frozen or the entire model can be trained. The latter

approach is used when sufficient training data is available for the new task, allowing

the information already learned from the first task to be used and the weights to be

further adjusted with new data [42].

In this work, the database of PPGs is found to be better than the ECG database,

making the fine-tuning approach suitable. In general, however, the TL approach is

intended to compensate the generally poorer database of PPGs by pre-training on

ECGs. However, some of the arrhythmia classes used in this study are underrep-

resented in the otherwise large ECG database. Therefore TL approaches requiring

many samples of both databases can be applied. The present work investigates dif-

ferent TL strategies for all models. Specifically, in the autoencoder model, parts of

the encoder or the decoder can be frozen while other layers are fine-tuned. In this

work, the weights of the encoder are fixed and only the decoder is tuned using PPG

data. In the second model, two different approaches are used and compared. In

the first approach, only the fully connected layers of each model are tuned, while

the weights of all other layers remain fixed. The second approach involves further

training all layers of the model on the PPG data.
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4.4 Ensemble of Multiple Binary Classifiers

The network structure of the second model is originally designed to implement

multiclass classifiers. However, an ensemble of multiple binary classifiers is more

suitable due to the underrepresentation of individual classes in the ECG data. The

ensemble allows each classifier to focus on detecting patterns in a specific class,

without being affected by the imbalance of other classes. The exact difference and

architecture are highlighted below.

In the ensemble of multiple binary classifiers, the original multiclass problem is

divided into subtasks whose combined output performs the classification [43]. The

idea behind this is that binary classification tasks are easier to solve than multiclass

tasks. However, the challenge is to combine the binary classifiers to ensure correct

classification afterward [44].

There are two strategies for binarizing multiclass problems. One approach is one-

vs-all classification. Here, for m classes, m binary models are created that separate

each class from all others. The other strategy is one-vs-one classification. For this,

m classes are divided into m(m−1)/2 binary problems. Each binary problem learns

to distinguish two classes from each other [44]. In this work, the one-vs-all approach

is followed because fewer models need to be generated, and thus the computational

effort is lower.

There are also different approaches to merging the individual binary classifiers.

Two methods for one-vs-all classification are presented in the following. The simplest

strategy is the voting strategy. The class of the classifier with the highest positive

response is taken. This approach is also useful for a multilabel problem where

multiple classes can be output. For this, the list of all positive predictions is returned

[44]. Another strategy was presented in 2008 by Hong et al. [45]. The authors

trained a Naive Bayes classifier along with all other binary models. The classifier

determines the order in which the binary classifiers are processed. The class whose

model returns a positive value first is considered. This is done dynamically for each

sample. This means that the confidence of the individual models is not relied on.

Since a multilabel problem is interesting for the use case of this work, the voting

strategy is used.

34



The combination of several binary models is of interest for network two. This

work compares classification by a multiclass model with an ensemble of several

one-versus-all binary classifiers for the Betti-CNN as well as for the CNN and the

multichannel network. The network architectures are the same. The only difference

is the generation of five binary models per channel and their subsequent combination.

The resulting architecture for the CNN is shown as an example in Figure 4.3.

CNN-A

CNN-N

CNN-SVT

CNN-VT

CNN-V

[N]

convolutional neural network

True

False

False

False

False

Figure 4.3: Architecture of the CNN with an ensemble of binary one-vs-all classi-
fiers to predict the heartbeat or -rhythm class. All labels which models
predicted True are returned.
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5 Implementation and Results

This chapter deals with the implementation of the models and different approaches

described in the previous chapter. First, each of the components is considered indi-

vidually, before the implementation of the overall model structure is discussed. The

frameworks used are also presented. The implementation and results are introduced

in the following order. First, the models are implemented for ECGs. Then, PPG

data are applied to the model structure. Next, the transfer learning approach is

applied and the results are compared with the PPG-only approach. Finally, the

ensembles of binary classifiers for both ECG and PPG data are described.

5.1 Frameworks and Programming Language

The models and approaches are all implemented in Python and organized using

Kedro. Kedro is an open-source Python framework for writing maintainable and

modular data science code. The framework allows the generation of pipelines that

can be used to structure different experiments. Kedro provides a folder structure for

each pipeline so that the code structure is also standardized and easy to maintain.

An integrated data catalog allows data to be loaded and saved in various file formats.

Through the data catalog, developed models can also be versioned [46].

A total of 20 pipelines have been created in this work. Three of them contain steps

of data preprocessing. The components of the designed overall architecture are first

considered individually in different pipelines each for ECG and PPG data. Then

another pipeline is created for the multichannel network. Separate pipelines for

each model are built for transfer learning as well as for implementing the ensemble

of binary classifiers. For the latter, the pipelines are designed individually for ECGs

and PPGs. Despite the partially reusable code, the division into different pipelines
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has the advantage that the experiments can be run individually and the associated

models can be versioned without having to adapt the code. This allows the best-

performing model and approach to be extracted from the code as an independent

pipeline for further work.

The models are all developed using PyTorch, an open-source machine learning

framework that can be used for both research prototyping and production deploy-

ment [47]. The training of the models take place on the CPU of a MacBook from

2020 with an M1 chip and 16 GB RAM.

5.2 Multiclass Model

When implementing the system described in the previous chapter, the various mod-

els are first implemented individually. The implementation of the autoencoder, the

CNN, and the Betti-CNN are described in the following.
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Figure 5.1: Exemplary samples of normal sinus rhythm recorded with an ECG (left)
and a PPG (right).

The autoencoder is trained on samples of normal sinusoidal rhythms. Each sample

has an input size of 720 data points. Examples of ECG- and PPG-samples are

shown in Figure 5.1. The encoder and decoder each consist of five layers. Each layer

includes a linear layer and a rectified linear unit (ReLU) activation function. The

first four layers of the encoder also contain batch normalization. In the last decoder

activation function, ReLU is replaced by a Sigmoid function. This is because the

input signals are normalized between zero and one. Since the Sigmoid function also
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returns values between zero and one, the reconstruction of the signal is reduced to

this range of values. The exact network architecture is shown in figure 5.2.
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Figure 5.2: Architecture of the autoencoder identical for ECG and PPG data.

The Xavier initialization is used to initialize the weights, and the Adam optimizer

is selected to update the network weights. The learning rate for training is 1e-3 and

the weight decay is 1e-8. The autoencoder is trained with a batch size of 128 for

1500 epochs. The Mean Squared Error is chosen as the loss function. Using this

loss function, larger deviations in the reconstruction are weighted more heavily, thus

penalizing incorrect reconstruction of peaks.
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Figure 5.3: Distribution of normal sequence and abnormal sequence losses of ECG
data with intersection points to determine the threshold for classifying
the sequence in normal or abnormal.
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After training the model, weights are frozen and the threshold is determined

using the test data. This is done by calculating the loss of all normal and all

abnormal samples separately. The distributions of the losses are then considered

and the intersection between the normal and abnormal distributions is calculated.

Thereby the frequencies are scaled between zero and one. The presentation of the

loss distribution curves for ECG data with the intersections can be seen in Figure

5.3. The intersection point furthest to the left is set as the threshold, resulting in a

threshold value of 0.002.

Two kinds of errors can occur when classifying using the threshold. Either a

normal rhythm is classified as abnormal or an abnormal rhythm is classified as

normal. The latter requires more attention in this context, as there are greater risks

associated with such a misclassification. Figure 5.4 shows the confusion matrices of

classifications with the errors described above.

5233 645

614 5264

normal abnormal

abnormal

normal

1000

1500

2000

2500

3000

3500

4000

4500

5000

ECG

predicted class

tru
e 

cl
as

s

10.566k 4254

7161 7659

normal abnormal

abnormal

normal

5k

6k

7k

8k

9k

10k

PPG

predicted class

tru
e 

cl
as

s

Figure 5.4: Confusion matrices of the autoencoder’s performance on ECG data (left)
and PPG data (right).

An F1-score of 89.1% is obtained for ECG data and 64.88% for PPG data. A

sample for each classification error is shown in Figure 5.5. In the poor reconstruc-

tions of sinus rhythm, it is noticeable that the curves show greater variance than

other signals with normal sinus rhythm. This can be explained by the differences

between patients, as in some patients the sinus curve has a greater variance than

in others. Additionally, there are differences in abnormal heartbeats depending on

the arrhythmia. In class VT there is no misattribution to sinus rhythm. In class
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PAC, however, 11.4% are misclassified as sinus rhythm. Class PVC and SVT are

misclassified 0.01% of the time.
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Figure 5.5: One example of each misclassification of the autoencoder, where a sinus
rhythm is classified as abnormal (on the left), and an arrhythmia is
classified as normal (on the right).

In this work, there is a potential for incorrect label assignment when dividing the

PPG sequences into two-second sequences, which may affect the classification into

normal/abnormal, as well as in the multiclass categorization. Splitting the signals

into shorter segments increases the risk for mislabeling of PVC and PAC samples,

as these abnormal segments are transient and the rhythm is otherwise normal. As

a result, normal sequences may be labeled as abnormal.

To investigate the effect of potential mislabeling, multiple tests are performed to

compare the performance of the model on ten-second and two-second sequences us-

ing the F1-score. The analyses are performed on the network architecture presented

by Liu et al [4]. The results show no significant difference in the scores for the

two variants (37.32% for ten seconds and 37.92% for two seconds). However, the

confusion matrices (cf. Figure 5.6) show that the model is more likely to classify

abnormal sequences as normal for the ten-second sequences. As the proportion of

abnormal parts in ten-second sequences is small, it is difficult for the model to detect

them. In contrast, normal sequences are more often misclassified as abnormal in the

two-second sequences. However, this behavior is preferred because the misclassifi-

cation of abnormal sequences has a greater impact, as it imposes a potential severe

health risk. Overall, using two-second sequences provides a better trade-off between

the risk of misclassification and data availability.
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Figure 5.6: Confusion matrices showing the classification performance for ten-second
(left) and two-second sequences (right).

In the second network, additional data preprocessing is carried out by reducing

the number of samples to a maximum of 2000 for each class. The purpose of this step

is to produce a balanced data set. However, in the case of the ECG data, the PAC

and SVT classes suffer from a scarcity of samples (cf. Figure 4.1), resulting in an

unbalanced data set. A reduction in the number of samples to match the class with

the fewest samples results in a severe loss of performance, so this variant is excluded.

Conversely, the PPG data set is balanced by limiting the number of samples to 2000

for each class. The performance of the models is tested on 100 samples per class.

This selection is imposed by the limited number of samples available for certain

classes, and thus the maximum use of the data for training purposes. As with the

training data, the underrepresented classes in the training set also showed a lack of

samples in the test set. In order to address this issue, a comparable ratio as in the

training data of samples for each class is maintained in the test set. The labels of

the samples are additionally one-hot encoded before the models are implemented.

To implement the first channel of the second network, the first step is to generate

Betti curves from the samples. The curves can be generated using the GUDHI

package. The package is only supported for Anaconda in combination with the M1

chip. For this reason, the generation of the Betti curves is outsourced from the
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project and realized via a Jupyter Notebook. In addition, the TDA toolbox from

Dindin [48] is used to generate the Betti curves. First, the persistence barcode is

generated and then the Betti curves are computed. The number of points to be used

for the curves is specified as a parameter in the curve generation function. If the

number of points is too high, the curve is too fine-grained and the topology behind

the curves is not as clear. For this reason, 128 points are chosen.
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Figure 5.7: Model structure of the Betti-CNN identical for ECG and PPG data.

The generated Betti curves are used as input to a one-dimensional CNN. The

CNN consists of three convolutional layers, each with a dropout of 0.5 and a max-

imum pooling operation. ReLU is used as the activation function. After the three

convolutional layers, there is a flattening operation, followed by three linear layers.

The last layer uses the Softmax function to obtain a probability for the five classes.

The architecture is shown in Figure 5.7. The two Betti curves are processed in par-

allel as two channels in the CNN. Training is done for 150 epochs with a batch size of

128, a learning rate of 0.001, and a weight decay of 0.005. The cross-entropy loss is

used as the loss function and optimization is done with Adam. An F1-score of 62%

is achieved on ECG data and 34.94% on PPG data. The corresponding confusion

matrices are shown in Figure 5.8.

When trained on ECG data, the total misclassification of all class PAC and SVT

samples is striking. These classes are underrepresented in the data. For comparison,

the model is trained without the underrepresented classes and reached an F1-score

of 90%. Additionally, analysis of the confusion matrices of the models trained on

PPG data shows that a great number of arrhythmias are classified as normal. This

behaviour is also observed with the autoencoder.
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Figure 5.8: Confusion matrices of the Betti-CNN’s performance on ECG data (left)
and PPG data (right).

In the second channel, the signals are processed using a CNN, which is closely

modeled on the Betti-CNN structure. However, unlike the Betti curve, the signal

itself is used as the input to the CNN as a single channel. The CNN has the same

number and structure of layers as the Betti-CNN but differs in kernel size. While

the kernel size remains the same in the Betti-CNN, it increases in the CNN. A visual

representation of this architecture is shown in Figure 5.9.
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Figure 5.9: Model structure of the CNN identical for ECG and PPG data.

The performance of the CNN in classifying five classes on ECG data is evaluated

with an F1-score of 56%. As also observed with the Betti-CNN, none of the classes

PAC and SVT receive any sample assignments during the inference process. Again,
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for comparison purposes, the model is compared with the classification of the three

classes. A significant performance improvement is also observed, with an F1-score

of 92%. In contrast, the CNN performs poorly when applied to PPG data, achieving

an F1-score of 6.67%. In this case, samples are randomly assigned to a single class

during inference.

In the process of merging the two models into a multichannel model, the con-

volutional layers are adopted, followed by a global average pooling. The outputs

of the pooling operation are then concatenated, and the resulting output is further

processed in three fully connected layers. As before, a Softmax operation, which

converts the output into probabilities per class, is used to generate the final output.

The structure of the layers remains unchanged, except for the addition of global

average pooling and concatenation operations. The resulting architecture is shown

in Figure 5.10. In the case of ECG data, the multichannel model achieves a score of

61%, while for PPG data the score is 18%.
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Figure 5.10: Model structure of the multichannel network identical for ECG and
PPG data. The multichannel network is a combination of the Betti-
CNN and the CNN.
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5.3 Ensemble of Multiple Binary Classifiers

Given the uneven distribution of arrhythmia classes in the ECG data, an ensemble

of several binary classifiers is evaluated to improve the performance of the second

network. For each class, a model is created to distinguish it from all other classes.

Consequently, a change in the model structure is required for the second network.

Specifically, five models are created for each channel, maintaining the model archi-

tecture of the Betti-CNN and CNN models. The resulting structure of the CNN

channel has already been explained in Section 4.4.

The data preprocessing method for the ensemble of binary classifiers differs from

the multiclass approach in one aspect. Instead of one data set with different class

labels, five data sets with binary differences are required. To achieve this, a data

set is created for each class, where a True value corresponds to that class and a

False value corresponds to a sample from all other classes. The number of samples

from other classes is limited to the number of available samples from the True class.

Apart from this modification, all other preprocessing steps remain identical between

the two approaches.

Class Betti-CNN CNN Number of Samples

sinus rhythm 91% 96% > 5,000,000
premature ventricular contraction 93% 92% 2,316

ventricular tachycardia 92% 89% 2,731
premature atrial contraction 66% 50% 612
supraventricular tachycardia 91% 88% 867

Table 5.1: F1-scores of each model in the binary ensemble trained on ECG data for
each class and the number of samples per class. The score for the class
with the fewest samples performs the worst.

The models for the ensemble of binary classifiers are trained sequentially, with

the training parameters remaining the same. The overall model architecture also

remains unchanged, except for the number of neurons in the final output layer during

the Softmax operation. This number is reduced from the previous five to two, as

binary classification is now performed. During inference, each test sample is passed

through each model and each model returns a True or False value. A True value
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indicates the presence of the class assigned to that model. A list with all True

and False values of the individual models is returned. This list is then used to

determine the labels. This approach may result in the assignment of multiple labels

per sequence, but this scenario is not encountered during the experiments, and thus

the handling of such cases is not addressed in this work.

For the models trained on ECG data, the performance of each class is evaluated

for both the Betti-CNN and CNN models. The results are presented in Table 5.1. It

is observed that the models in the class with the fewest samples (class PAC) have the

lowest performance. Furthermore, the multichannel model achieves an F1-score of

91% on the ECG data, which is a significant improvement of 30% over the previous

result. This indicates the effectiveness of the proposed approach in improving the

classification performance of ECG data, especially in the presence of unbalanced

classes.

Given the significant improvement in performance observed with the ensemble

approach on ECG data, the same technique is applied to PPG data. The results

show that the Betti-CNN model achieves an F1-score of 58.98%, an improvement of

24% over the previous result. The CNN model also benefits from the ensemble

technique and achieves an F1-score of 71.15% on the PPG data. Notably, the

multichannel network shows a strong improvement in performance, achieving an

F1-score of 89%. This result highlights the effectiveness of the proposed ensemble

approach in improving the classification performance of PPG data. The results of

the ensemble model in direct comparison with the multiclass model are shown in

Table 5.2.

Model Multiclass Approach Binary Ensemble

Betti-CNN 35% 59%
CNN 7% 71%

Multichannel Model 18% 89%

Table 5.2: Comparison of F1-score performance between a multiclass approach and
an ensemble of binary classifiers for the classification of PPG signals. The
ensemble model outperforms the multiclass model.
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It is worth noting that utilizing an ensemble of several binary classifiers can lead

to a significant improvement in classification accuracy. The relevance of these results

are discussed in section 6.1.

5.4 Transfer Learning

This work investigates the use of transfer learning (TL) to improve the classification

of PPG data. In particular, it explores the potential of using basic structures learned

from ECG data to improve the classification of PPG data. In Section 4.3 the concept

of transfer learning and several variants is described.

To implement the TL approach, a new function that freezes the weights of different

layers is introduced. The rest of the implementation remains unchanged. First, the

transfer learning with the autoencoder is evaluated. The weights of all encoder

layers are frozen and the decoder layers are tuned with PPG data. Afterwards, the

autoencoder achieves an F1-score of 66.6%, an improvement on the previous 64.88%.

This work also explores two TL approaches on each of the models in the second

network, which are compared with models trained on PPG data only. The first

approach freezes the weights of the convolutional layers and only fine-tunes the

linear layers. In the second approach, the model is pre-trained on ECG data and all

layers are fine-tuned using PPG data.

Model PPG-only Fine-tuning
Fully Connected
Layers

Fine-tuning
all Layers

Betti-CNN 34.94% 16.04% 35.4%
CNN 6.67% 36.42% 38.82%

Multichannel Model 18.33% 20.26% 29.98%

Table 5.3: Comparison of F1-score performance between a multiclass model trained
solely on PPG signals and the use of transfer learning, where the model
is first pre-trained on ECG data and then fine-tuned with PPG signals.

In the first approach, only the final layers are fine-tuned and the Betti-CNN model

achieves an F1-score of 16.04%. This result is a decline from the previous 34.94%.
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However, the performance of the CNN model improves significantly from a non-

learning model with a score of 6.67% to a classifier with an F1-score of 36.42%.

Comparing the multichannel model trained on PPG data only with the first TL

approach, an improvement from 18.33% to 20.26% is noticeable. The second ap-

proach involves fine-tuning the entire model, which improves the performance of

the Betti-CNN model to 35.4%. The performance of the CNN model also improves

with this approach from the previous 6.67% to an F1-score of 38.82%. The same

applies to the performance of the multichannel model, which achieves an F1-score

of 29.98% using the second TL approach. When comparing the two TL approaches,

it should be noted that fine-tuning the entire network architecture produces better

results than fine-tuning individual layers. The results are also shown in Table 5.3.

Although some of the improvements achieved through transfer learning may be

small, there is a noticeable performance increase within the limits of imprecision.
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6 Discussion and Conclusion

The results obtained and the design choices made are discussed in the following.

Limitations are also highlighted, and possible further work is described. Finally, a

summary of all the relevant results is given in the conclusion.

6.1 Discussion

Several approaches have been tested to improve the classification of arrhythmias us-

ing PPG data. First, a reference model was developed using ECG data, combining

various aspects of previous publications regarding data selection, number of classes,

and methods used. The reference model differentiated between normal and abnor-

mal sequences using an autoencoder with an F1-score of 89%. Thereby, the PAC

class has the highest percentage of misclassification compared to the other classes.

This result may be related to the small sample size of the PAC class compared to

other classes. Therefore, it is reasonable to conclude that the effectiveness of the

autoencoder model on ECG data could be enhanced by increasing the sample size

for underrepresented classes.

When classifying the sequences into five classes, an F1-score of 61% is obtained,

which do not meet the benchmark performance. This result could be attributed to

the underrepresentation of some classes, as the classification accuracy for the three

most common classes is 90-92%. This underrepresentation is due to the limited

choice of classes available in the PPG data. During the TL evaluation, the same

classes have to be used in both data sets, limiting the otherwise large ECG database.

To overcome the challenge of an imbalanced data set, this work investigates the

potential of using multiple one-vs-all binary classifiers instead of a single multiclass

classification model. This type of classification improves the original approach by
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30%, resulting in a score of 91%. This approach is especially useful in situations

with limited data sets and reduced model structures. The superior performance of

an ensemble of multiple binary classifiers can be attributed to two factors. First,

discrepancies in the number of samples per class within the training data are equal-

ized. In cases of uneven distribution, the model learns to consider the likelihood of

a class occurring. As a result, classes that are underrepresented in the training data

are selected less frequently during inference. This is demonstrated by the results

on ECG data for the multiclass model, where eliminating underrepresented classes

from the data significantly improve the classification. In the single binary models,

in turn, each sample from each model is considered and the probability is identical

for each class in binary relevance. Secondly, performance is improved because bi-

nary discrimination is less complicated and easier to learn. In particular, smaller

model structures perform better in binary classification than in multiclass classifi-

cation. Furthermore, binary classifiers have previously been shown to outperform

multiclass approaches in published research (cf. Chapter 3). Our approach takes

this concept of binary classification and applies it to the multiclass context via an

ensemble model.

The developed model was afterward applied to PPG data. First, the performance

of the model structure was assessed by training it on PPG data only. The autoen-

coder achieve an F1-score of 65%, while the multichannel network achieve 18%.

Notably the CNN is unable to learn anything and the Betti-CNN achieve a score

of 35%. Due to the limited sample size of individual classes in the ECG data small

model architectures are used in the second network to avoid overfitting. However,

the small model architectures are not sufficient to extract useful information from

the PPG data. Consequently, the CNN cannot learn anything. In contrast, the

Betti-CNN is able to classify some of the samples correctly because the features

have already been extracted by preprocessing the signals into Betti curves. The

curves, which represent the topology of the sequences, are easier for the CNN to

interpret and the features are more obvious. The superior performance of the Betti-

CNN is also evident in the classification on ECG data. Another advantage of using

Betti curves is their smaller size, which allows them to be processed more quickly.

This smaller size also enables processing with smaller model structures.

52



The study aims to evaluate the effectiveness of transfer learning, which involves

fine-tuning models trained on ECG data with PPG data. The results show slight

improvements of up to two percent for the autoencoder and the Betti-CNN. The

most significant improvement is seen in the CNN, which transforms from a non-

learning model to a classifier with an F1-score of 39%. Transfer learning is used

to extract coarse structures from the ECG sequences, which are then recognized in

the PPG data, resulting in a performance gain. The increase in training samples

also explains the improvement with TL. The ECG data is used to learn simple

structures, which can then be consolidated and developed on the PPG data. The

similar structure of the two curves is advantageous in this context. Even though the

improvement with TL on the autoencoder and Betti-CNN is small, an improvement

could be observed. Therefore, transfer learning can be said to improve the results

within the limits of imprecision. Other approaches, such as the one presented by Li

et al. [11], also achieved only a few percentage points of improvement when applying

TL to ECG and PPG data.

Given the significant improvement achieved by the ensemble method in classify-

ing ECG data, this approach is also applied to PPG data. As a result, a significant

increase in performance is observed, with results approaching those obtained with

ECG data, resulting in an F1-score of 89%. Again, the non-learning CNN evolves

into a classifier that can determine the correct class with an F1-score of 70% when

using the ensemble approach. This result reinforces the assumption that smaller

model structures can perform binary classification better than multiclass classifi-

cation. In addition, the smaller size of binary models makes them more suitable

for running on smart devices. Another advantage of the ensemble is its versatility

for multilabel classification. In this study, two-second sequences without center-

ing the peaks are used. This approach is very practical as preprocessing sequences

can be time-consuming and require high computational power, making it difficult

to apply on smart devices. Multiple labels can appear within a single sequence by

selecting sections of seconds. Using the ensemble, multiple labels can be assigned

to a sequence simultaneously. One drawback of the segmentation into second-long

sequences is the difference in the number of QRS-complexes, thus total number

of heartbeats in the sequence. If the number of QRS-complexes remain constant,

performance might improve.
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In terms of the overall model architecture, there are also some aspects that need

to be considered. An important aspect of the model architecture is the separation

into two networks. The autoencoder is responsible for the distinction between nor-

mal and abnormal sequences so that the latter is only processed by the subsequent

network. This approach optimizes computational resources by focusing only on ab-

normal heart rates and rhythms. However, for this approach to be successful, it is

necessary to accurately classify all abnormal heartbeats. Furthermore, in the ensem-

ble approach the binary classifiers include a class that separates sinus rhythm from

all other classes, which is consistent with the autoencoder’s separation of normal and

abnormal sequences. Therefore, it would be logical to first run sequences through

the binary model that recognizes sinus rhythm and use the other classifiers based on

the output when the performance of the binary model outperforms the autoencoder.

This is for example the case for the CNN trained on ECG data reaching an F1-score

of 96%.

Furthermore, the necessity of the multichannel approach is questionable. In gen-

eral, the performance of the multichannel network is inferior to that of the best

single model, except when an ensemble of binary classifiers is used on PPG data. A

potential advantage of this approach is the reduction of overfitting that can occur

within a single model. In theory, combining different models should lead to the

generation of new features and thus improve performance. However, the current un-

derperformance of the multichannel approach may be due to the poor performance

of a single channel. Therefore, further research is needed to evaluate the poten-

tial benefits of the multichannel strategy using larger data sets and more extensive

model structures.

The comparability of the approach presented in this work with other existing

work is limited by several factors. Firstly, comparing the performance of this ap-

proach with other ECG-based approaches, such as the one by Dindin et al. [13], is

complicated due to differences in the classes and data used. This work focuses on

classifying both heartbeats and -rhythms, whereas Dindin et al. [13] focused solely

on heartbeats. Additionally, due to the selection of different classes, the database

used in this work is relatively limited, which result in a smaller number of available

training data. Nevertheless, comparable results are achieved in the area of multiclass

classification based on ECGs using the ensemble of binary classifiers.
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When it comes to classification using PPGs, a comparison with the work of Liu et

al. [4] is relevant, as a part of the database from this publication is taken. However,

the authors used an imbalanced data set and evaluated the performance of the

classifier in terms of accuracy, which can be misleading. A high accuracy score on

an imbalanced data set does not necessarily indicate the true performance of the

classifier, as it tends to predict the most frequent class. For this reason, in this

work, the data set is balanced and the F1-score is used as the evaluation metric. In

addition, Liu et al. [4] only published the validation and test data, which accounts

for 40% of the data. To provide a baseline for an approximate comparison, the

approach of Liu et al. [4] was re-implemented using the previously balanced smaller

data set. The F1-score achieved is significantly lower than the accuracy stated in

the publication. However, the ensemble of binary classifiers developed in this work

outperforms the previous work with an F1-score of 89%, even assuming that the

accuracy stated in the publication reflects the true performance.

Another relevant approach to the multiclass classification of PPG is that of Polania

et al. [9]. In their paper, the authors distinguished four classes (N, PVC, VT, and

premature VT). However, PVC and VT are distinguished from the other two classes,

so there is no direct multiclass classification. The authors reported an accuracy of

over 90%, but it is not clear whether the data used in their study are balanced. In

addition, they used complex handcrafted features, making the approach complex,

probably domain-knowledge driven and time consuming.

In summary, due to the limitations of the aforementioned works and different class

choices, it is not possible to make a concrete comparison between the classification

approach presented in this work and the current State of the Art in ECG and PPG

classification.

6.2 Limitations

The results of this work are significantly limited by the restricted accessibility of

ECG and PPG data. In particular, the available PPG data on labeled arrhythmias

is very poor, and through the use of TL the ECG classes must contain the same

categories as the PPG data. However, the categories present in the PPG data are
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poorly represented in the otherwise extensive ECG database. Consequently, this

study requires the use of small model structures to avoid overfitting. The results

need to be analyzed in light of small model structures and limited training data and

must be evaluated further on larger model structures with more comprehensive data

to ensure generalizability.

Furthermore, no information on the quality of the data can be provided. One of

the problems that can arise during data preprocessing is the possibility of incorrect

label assignments, particularly when segmenting PPG sequences into shorter seg-

ments. These incorrect label assignments can be learned by the model, potentially

leading to poor performance. In addition, certain signals had to be upsampled due to

the use of different databases with different frequencies. Upsampling introduces new

data points that can distort the original signal and subsequently affect the model

training. In addition, the PPG data was collected in a clinical context, which may

lead to performance differences when the model is applied to PPG data collected

from a smartwatch. Retraining is therefore required.

It should be noted that the results of this study have not been cross-validated,

so there may be slight variations in the F1-score when applied to other data splits.

In addition, the medical context in which the study was conducted requires further

consideration. Misclassification of an arrhythmia can have serious consequences, so

errors in this regard should be weighted more heavily, which has not been done in

this study yet. Another critical issue in the medical context is the interpretability

of the models. The decision-making process of deep learning models is not easily

understood, which poses a challenge to their use. However, in the context of medical

applications, the interpretability of results is of significant importance. Therefore,

the use of explainable AI should be considered.

It is important to emphasize that models trained on single-lead ECGs or the

similar PPGs cannot replace a physician’s examination with multichannel ECGs.

This is because not all arrhythmias can be captured by single-lead ECGs. Therefore,

caution should be taken when interpreting the results of such models and their

limitations must be acknowledged.
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6.3 Further Work

The results of this work have been evaluated by experimental means. However, due

to the extensive nature of the investigation, certain aspects have been omitted and

may be further explored in future work.

Initially, the components of the model were implemented and evaluated separately.

The model’s architecture aims to combine these individual components into a co-

hesive concept focusing on future practical applications. Due to time constraints,

this step was not feasible within the current work. In addition, the individual model

components could be optimized through hyperparameter tuning to improve the F1-

score, which is not the primary focus of this study.

A limitation of this study is the insufficient amount of training data available. To

overcome this problem, a sliding window approach could be applied to increase the

number of data samples. Specifically, the window could be shifted by a few data

points during sequence generation to produce more diverse sequences that partially

represent the same arrhythmias. Increasing the training data allows larger model

architectures to be used and the results to be thoroughly evaluated.

The data preprocessing stage provides another opportunity to generate new sam-

ples of underrepresented classes by using upsampling techniques. Different upsam-

pling methods should be evaluated for suitability. In addition, signal preprocessing

can be optimized by dynamic time warping and other techniques, although it should

be considered that each step increases the complexity of the approach. In particu-

lar, the study identified several sequences that appeared suspicious to the untrained

eye. To combat this, an expert review of label assignments is recommended. Fur-

thermore, the testing of the approach on new patients with different measurement

devices will be of interest. An important issue in data collection and selection is the

consideration of patient metadata such as BMI, gender, and age. Such factors can

affect the model performance and should be considered in further work. Moreover,

the approach can be extended to other classes by collecting newly labeled data. The

collection of personalized PPG data using smartwatches is an interesting avenue for

further exploration. This requires refining the model for production and identifying

a solution for the edge device application. This is where Tiny-ML comes into its

own.
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The ensemble approach used in this study could benefit from further refinement

using alternative methods. For example, the effectiveness of using the one-vs-one

strategy and other techniques as the one presented by Hong et al. [45] (cf. Section

4.4) to merge individual models should be evaluated. Another possibility to consider

is the adoption of a multilabel approach, allowing input sequences to have multiple

labels, which is particularly relevant for later application on smart devices. In

addition, knowledge distillation is a viable option for merging individual models.

Moreover, the TL approach can be combined with the ensemble method. Since TL

was found to slightly improve the results, the same effect could occur applying TL

on the ensemble model.

Another compelling idea is the potential application of the approach to multiple

ECG leads. This allows for the capture of additional information that is not dis-

cernible in a single-channel ECG. Consequently, the CNN would receive multiple

channels as input, analogous to the Betti-CNN. It should be noted that this idea is

not intended for use on edge devices as these cannot record multi-channel ECGs.

The autoencoder can also be optimized. A semi-supervised training approach

can be implemented that includes both the normal and abnormal classes during

training. This adjustment would also allow the threshold to be modified. In the

inference of the autoencoder, a score can be introduced to reflect the reliability of

the classification. This score can be calculated by measuring the distance from the

threshold. If a sample is assigned to the normal rhythm but is close to the threshold,

it can be processed in the second network. This approach reduces the number of

incorrectly as normal labeled arrhythmias, which is relevant in a medical context.

6.4 Conclusion

This work examined whether an arrhythmia classification model pre-trained on ECG

data could achieve a higher F1-score than a model trained on PPG data only. There-

fore a reference model trained on ECG signals was developed that incorporates the

advantages and aspects of previous studies. Afterward, the model was applied to

PPG data which included an evaluation of transfer learning. During the study, the

challenge of the underrepresentation of certain classes in the ECG data was encoun-
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tered. To address this issue, the performance of an ensemble of binary classifiers

was compared to that of the original multiclass model.

The model structure developed in this work is characterized by the division into a

binary classification of normal and abnormal heart rhythms, and the multiclass clas-

sification of all abnormal heart rhythms. This design helps to save computational

resources, as all rhythms classified as normal do not require further processing. Deep

learning was chosen in the classification of abnormal sequences as it can better ac-

count for variations in individual heartbeat morphologies. Other methods, such as

machine learning, require pre-designed features that may not be able to capture such

differences. In addition, the use of TDA, specifically Betti curves, has been incor-

porated into the overall framework to compensate for individual patient differences.

The developed model is designed to be transferable to new patients. To achieve

this, the training and test data sets were partitioned based on patient identity. Pa-

tients included in the test data set were not previously included in the training data

set. This approach ensures that the model can classify the heart rhythms of new

patients.

The models were first implemented and evaluated individually. The autoencoder’s

initial classification of normal and abnormal heart rhythms achieved an F1-score of

89% on ECG data. The Betti-CNN model achieved a score of 62%, while the CNN

achieved a score of 56%. The multichannel approach, which combined the last two

models, resulted in an F1-score of 61%. Notably, the two underrepresented classes,

PAC and SVT, were not selected during inference of the second network, which

contributed to the poor performance. An ensemble of several one-vs-all binary clas-

sifiers was evaluated to address this underrepresentation. The ensemble significantly

improved the performance of the multichannel model, resulting in a score of 91%.

The performance of the autoencoder on PPG data was weaker than on ECG data,

resulting in a score of 65%. The Betti-CNN model achieved an F1-score of 35% on

the PPG data. However, similar to the autoencoder model, many abnormal samples

were incorrectly classified as normal. Moreover, the CNN model failed to learn from

the PPG data, with all samples randomly assigned to a class during inference,

resulting in a low F1-score of 7%. This failure to learn may be due to the small

architecture of the model. Due to the limited size of the ECG database for the classes

used, smaller model structures were chosen to avoid overfitting. However, previous
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deep learning approaches to arrhythmia classification on PPGs have utilized large

model architectures. The smaller structures used in this study may not be able

to effectively capture the features in the PPG data. In contrast, the Betti-CNN

may have learned from the PPG data because the generation of the Betti curves

extracted features that the CNN could process more efficiently. When the two

models are combined into a multichannel model, a score of 18% was achieved.

One way to improve classification with PPGs is through the use of TL. Several

approaches were tested to evaluate TL on the models. The most successful approach

is to pre-train the models on ECG data and then fine-tune the whole model on PPG

data. An improvement of 0.46% for the Betti-CNN was obtained with this approach.

The greatest improvement was observed when transfer learning was applied to the

previously non-learning CNN, enhancing the score to 38.82%. By fine-tuning the

decoder layers, the autoencoder performance was improved by 1.72%. One of the

advantages of transfer learning is the increased amount of training data, which allows

simple structures to be learned from the ECG sequences that are similar to the PPG

data, allowing the model to learn fine-grained features in subsequent iterations. The

multichannel model also showed improvement, achieving a score of 30%. Although

the increase in performance observed is small in some cases, there is an improvement

within the limits of imprecision.

Due to the strong improvement in results when using an ensemble on ECG data,

this approach was also tested on PPG data. It was observed that the binary classi-

fication provided a simplification from which the approach could benefit with PPG

data. The results showed that the ensemble approach outperformed all other PPG

models with an F1-score of 59% for the Betti-CNN, 71% for the CNN, and 89%

for the multichannel model. The superior performance of the ensemble method can

be attributed to the simplified binary classification, which is easier to learn than

multiclass classification. Additionally, the ability to assign multiple classes to a se-

quence using a multilabel approach makes the method more practical and easier to

implement on smart devices.

However, the results obtained should be viewed in the context of the underrep-

resentation of certain classes in the ECG data and the relatively small sample size

within the otherwise extensive ECG database. It is possible that different results

could be obtained using larger model structures and more extensive data. In ad-
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dition, to confirm the score of the results obtained, it is recommended that this

approach be cross-validated and tested on other data.

When it comes to place the proposed model in existing work, several factors make

this difficult. Nevertheless, this work introduces an ensemble approach which per-

formance is comparable to benchmark performance on ECG data and even surpasses

it on PPG data. Additionally, this work represents an advance in the simultaneous

classification of heartbeats and -rhythms on ECG data and proposes a technique

for training models with good performance on limited data. In conclusion, although

further development is needed, the potential benefits of implementing this approach

for widespread cardiovascular health monitoring make it a promising area for future

research.
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A Abbrevations

a aberrated atrial premature beat

A atrial premature beat

AF atrial fibrillation

AHA American Heart Association

AVNRT atrioventricular nodal re-entrant tachycardia

Betti-CNN convolutional neural network that processes Betti curves

CNN convolutional neural network

DCNN deep convolutional neural network

DNN deep neural network

DTW dynamic time warping

e atrial escape beat

E ventricular escape beat

ECG electrocardiogram

f fusion of paced and normal beat

F fusion of ventricular and normal beat

j nodal (junctional) escape beat

J nodal (junctional) premature beat

L left bundle branch block beat

LED light-emitting diodes

MIT-BIH Massachusetts Institute of Technology - Beth Israel Hos-

pital

N normal beat

P paced beat

PAC premature atrial contraction

PPG photoplethysmography

PVC premature ventricular contraction
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Q unknown beat

R right bundle branch block beat

ReLU rectified linear unit

ROC average area under the receiver operating characteristic

curve

S supraventricular premature beat

SDAE stack denoising autoencoder

SMOTE synthetic minority over-sampling technique

SVEB supraventricular ectopic beat

SVM support vector machine

SVT supraventricular tachycardia

TDA topological data analysis

TL transfer learning

U unclassified beat

VEB ventricular ectopic beat

VT ventricular tachycardia

WHO World Health Organization
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