
Best Practices for Operating
HiveMQ and MQTT on Kubernetes

Technical White Paper
2021

Christian Rohmann | Matthias Hofschen

Best Practices for Operating HiveMQ and MQTT on Kubernetes

2

Executive Summary ... 3
Introduction .. 3
 About HiveMQ ..4
 About inovex ..4
HiveMQ and MQTT .. 4
 MQTT ..4
 The HiveMQ MQTT Broker ..4
Operating the HiveMQ MQTT Broker ..5
 Kubernetes ..5
 Kubernetes Architecture ...6
 Kubernetes Building Blocks ..7
The Kubernetes Operator Pattern ..7
 The HiveMQ Kubernetes Operator ...8
HiveMQ and Kubernetes best practices .. 10
 Storage Considerations for HiveMQ .. 10
 Networking Aspects in Kubernetes .. 11
 Load Balancing Client Connections ... 11
 TCP Keepalive for MQTT ... 13
� /YFIVRIXIW�'YWXSQ�6IWSYVGI�(IƼRMXMSRW .. 13
Additional Resources .. 13
Summary and Outlook ... 14

Table of Contents

! www.hivemq.com

3

Executive Summary
Kubernetes is the next step to provide a unified operational platform for
cloud-native applications across most available public clouds and on-
premise infrastructures. With the release of the HiveMQ Kubernetes Operator,
the management and operation of HiveMQ clusters on Kubernetes is now
significantly simplified. In this white paper, we show the benefits of using the
HiveMQ Kubernetes Operator for running your IoT communication workloads on
Kubernetes and share our experiences from the field.

The Internet of Things (IoT) continues to drive enormous
growth in the number of connected systems and devices. The
majority of these connected devices use the MQTT protocol
to communicate with each other and backend systems. To
meet the demands of rapidly expanding networks of devices,
MQTT solutions usually require high operational reliability
and scalability; be it for vehicles that need mobility services,
or machines on the factory floor that require predictive
maintenance.

Many enterprises use DevOps teams to achieve the level
of reliability and scalability their applications require.
The DevOps teams are typically tasked with building and
maintaining systems that are designed with operational
automation, monitoring, and upgradeability in mind.
Increasingly, infrastructure as code (IaC) provides the
working foundation for the operational processes of these
systems.

The ability of Kubernetes to address many of the operational
needs and requirements such systems create has fueled
its widespread adoption across numerous industries.
Kubernetes abstracts the differences that exist between
cloud providers and on-premise infrastructures. As an open-
source container orchestration platform, Kubernetes provides
a descriptive approach to defining, managing, and operating
applications and workloads.

In particular, the Kubernetes operator pattern has emerged
as a way to address the need for operational automation.
The HiveMQ Kubernetes Operator uses this pattern to
provide the extensive operational experience of the HiveMQ

team encapsulated in code. The HiveMQ operator makes it
possible to run your MQTT communication solution straight
out of the box.

In this white paper, we discuss the best practices and
benefits of running your production IoT applications using
the HiveMQ MQTT broker at scale on Kubernetes and share
practical experience from the field.

Introduction

About HiveMQ
HiveMQ is one of the world’s leading companies for
connecting machines, devices, and applications in the
Internet of Things (IoT) sector. Our product, the HiveMQ
MQTT Broker, is based on the IoT standard communication
protocol MQTT and enables absolutely secure and highly
available data transfer between connected devices and the
cloud at all times. What makes the HiveMQ MQTT broker
unique is the high availability guarantee as well as the high
scalability. More than 130 customers, including many Fortune
500 companies, rely on HiveMQ in production for business-

critical use cases such as connected cars, transport and

logistics, Industry 4.0, and connected IoT products.

www.hivemq.com

https://www.hivemq.com/solutions/iot/enabling-the-connected-car/
https://www.hivemq.com/solutions/transportation-and-logistics/
https://www.hivemq.com/solutions/transportation-and-logistics/
https://www.hivemq.com/solutions/manufacturing/
https://www.hivemq.com

Best Practices for Operating HiveMQ and MQTT on Kubernetes

4

HiveMQ and MQTT

MQTT
Throughout the Internet of Things (IoT), MQTT is the protocol
of choice for communication between devices, machines,
and humans. The MQTT messaging protocol is an ISO
20922 standard that was defined in 1999 by Andy Stanford-
Clark and Arlen Nipper. Originally developed to support
embedded-systems use-cases in the oil industry, MQTT is
now the dominant protocol for IoT applications. Due in part
to the protocol’s long history, MQTT is well established
across numerous industries and widely supported by most
key players and technology solutions. The broad adaptation
of MQTT makes the implementation and architecture of
connected use cases a lot easier.

To learn more about the history and use of MQTT, read
HiveMQ’s free MQTT Essentials E-Book.

HiveMQ MQTT Broker
MQTT brokers are the central infrastructure components
of every MQTT solution. The MQTT broker must be fail-
safe, robust, scalable, and offer the necessary delivery
guarantees for messages in high-performance, heavy-load
scenarios. Most importantly, the MQTT broker needs to
provide 100% compatibility with the MQTT specification.
The MQTT specification defines many requirements for an
MQTT broker to implement that reduce the responsibility of
constrained devices and sensors. As the sheer volume of
interconnected devices skyrockets, strict adherence to the
MQTT specification is crucial for evolving use cases between
highly disparate devices, systems, and architectures.

The HiveMQ MQTT broker fully supports
the MQTT specification. In fact, the
HiveMQ broker supports all MQTT
specifications from MQTT 3 to MQTT 5.
This complete adherence is essential for
supporting diverse sets of devices and
clients that often speak different levels of
MQTT. Support for all MQTT features and
versions makes it possible to seamlessly
connect older and newer devices in a
single network with one HiveMQ cluster.

About inovex
inovex is an IT project center that focuses on digital
transformation services and is driven by innovation and quality.
Over 370 IT experts provide comprehensive support to companies
in making their core business digitised and agile and in the
implementation of new digital use cases. The solutions we offer

include application development (web platforms, mobile apps,

smart devices, and robotics – from UI/UX design to backend

services), data management and analytics (business intelligence,

big data, searches, data science and deep learning, machine

perception and artificial intelligence) and the development of

scalable IT infrastructures (IT engineering, cloud services), within

which the digital solutions are operated in DevOps mode. We

modernise existing solutions (replatforming), strengthen systems

against external attacks (security), and share our knowledge

through Training and Coaching (inovex Academy).

inovex has locations in Karlsruhe, Pforzheim, Stuttgart, Munich,

Cologne and Hamburg and is involved in projects throughout
Germany.

inovex | About us

HiveMQ runs in many different environments and infrastructures.

https://www.hivemq.com/blog/announcing-mqtt-ebook/
https://www.inovex.de/en/our-services/web/
https://www.inovex.de/en/our-services/apps/
https://www.inovex.de/en/our-services/smart-devices-robotics/
https://www.inovex.de/en/our-services/uiux/
https://www.inovex.de/en/our-services/backend/
https://www.inovex.de/en/our-services/backend/
https://www.inovex.de/en/our-services/business-intelligence/
https://www.inovex.de/en/our-services/big-data/
https://www.inovex.de/en/our-services/search/
https://www.inovex.de/en/our-services/data-science-deep-learning/
https://www.inovex.de/en/our-services/machine-perception-artificial-intelligence/
https://www.inovex.de/en/our-services/machine-perception-artificial-intelligence/
https://www.inovex.de/en/our-services/machine-perception-artificial-intelligence/
https://www.inovex.de/en/our-services/it-engineering/
https://www.inovex.de/en/our-services/cloud/
https://www.inovex.de/en/our-services/devops/
https://www.inovex.de/en/our-services/replatforming/
https://www.inovex.de/en/our-services/security/
https://www.inovex.de/en/our-services/training/
https://www.inovex.de/en/about-us/offices/office-karlsruhe/
https://www.inovex.de/en/about-us/offices/office-pforzheim/
https://www.inovex.de/en/about-us/offices/office-stuttgart/
https://www.inovex.de/en/about-us/offices/office-munich/
https://www.inovex.de/en/about-us/offices/office-hamburg/
https://www.inovex.de/en/about-us/

! www.hivemq.com

5

Operating the HiveMQ MQTT Broker

The HiveMQ Enterprise MQTT broker is usually operated
as a cluster of nodes that are distributed across physical
or virtual machines. Nodes in the cluster share the load of
communicating with connected clients evenly. The number
of cluster nodes for a specific use case is calculated based
on the number of clients, message throughput, and message
size.

The HiveMQ MQTT broker provides sophisticated clustering
capabilities that ensure reliability, horizontal scalability, and
performance for a wide array of MQTT use cases. HiveMQ’s
unique clustering mechanism is highly adaptable to different
environments and can be customized depending on the use
case and environment. A HiveMQ cluster can scale elastically
during operations to adapt to changing workloads. As new
nodes are added to a cluster, the workload is spread to
include the new nodes. Likewise, if the cluster size is reduced
the workload is redistributed.

The elasticity of a HiveMQ cluster also enables zero-
downtime-upgrades. Newly-upgraded nodes join the cluster
and take over part of the workload. Existing nodes can
be shut down and removed from the cluster while their
workload is distributed across the other cluster nodes. This
methodology of rolling upgrades provides migration support

for new versions and configuration changes during runtime.
Now let’s take a look at Kubernetes and how to operate your
HiveMQ MQTT workloads on Kubernetes.

Kubernetes
Cloud computing has seen wide adoption across many
industries. One of the advantages cloud computing offers
is that compute resources can be provisioned and used
elastically without time-consuming procurement processes.
In addition, cloud providers generally offer ready-to-consume
managed services such as databases, queues, and more.
These services can be provisioned via API in seconds
and subsequently used as building blocks for complex IT
infrastructures.

Companies that explore cloud-native approaches to run
application workloads often shift their architecture towards a
landscape of microservices that are made up of containerized
applications. The study “3 Critical Mistakes That I&O Leaders
Must Avoid With Containers” from Gardner states: “By 2023,
more than 70% of global organizations will be running more
than two containerized applications in production, up from less
than 20% in 2019.”

The attraction of containerized applications that can be easily
developed and tested on an individual developer machine,
then conveniently deployed, integrated, and run on large scale

production infrastructures has
certainly helped cloud computing
gain momentum. The concepts
and foundational technologies
for cloud computing have been
available for some time, but it was
the introduction of Docker in 2013
that significantly accelerated the
adoption of cloud computing.

The biggest catalyst for moving
application workloads to a cloud-
based environment has been the
release of Kubernetes by Google in
2014. Kubernetes is an open-source
container orchestration software
that is based on the experiences
that Google made with their internal

HiveMQ’s Dashboard offers out of the box insights for your MQTT workloads.

Best Practices for Operating HiveMQ and MQTT on Kubernetes

6

system called Borg. Since its launch, Kubernetes has received
unprecedented attention within the IT industry. Users and
contributors to the project range from the well-known
hyperscalers and traditional infrastructure providers to
software vendors and individual developers. As an open-
source project governed by the Cloud Native Computing
Foundation (CNCF), Kubernetes is not owned or controlled by
a single vendor. Hence there is no danger of vendor lock-in.

In summary, Kubernetes, K8s for short, is currently the
quintessential ecosystem for the deployment and operation
of cloud-native containerized applications.

Kubernetes Architecture
Kubernetes is a distributed system that consists of a control-
plane and a data-plane architecture. The control plane
hosts the API server and other active components known as
controllers. Data accessed via the API server is persisted
in Etcd, a key-value store. Etcd usually runs in a distributed
way and provides consensus on the current state of all API
objects that are stored. The API server is the central hub for
all other component communications in Kubernetes. Users

such as developers or operators also interact with the API
server through tools such as kubectl or Helm.

The real work of running application workloads is performed
by worker machines called nodes. Nodes are usually installed
with a flavor of the Linux operating system and run a
component called the Kubelet. The Kubelet agent cooperates
with a container runtime such as Containerd to manage
the application containers on each node. Kubelet manages
fetching images, starting and stopping containers, monitoring
and collecting resource usage or log output, and other
aspects of the container lifecycle.

Kubelet constantly communicates with the API server to
check the desired state of an application and reports back
the current state of its node and the running application pods.
As a built-in core resource type, pods bundle one or more
application containers. The constant reconciliation of desired
state versus existing state is referred to as a control-loop and
represents one of the core paradigms of Kubernetes.

The Kubernetes architecture consists of a control plane and worker nodes. Find a more detailed description here.

https://www.cncf.io/
https://www.cncf.io/
https://brennerm.github.io/posts/kubernetes-overview-diagrams.html

! www.hivemq.com

7

Kubernetes building blocks
Resources, such as Deployments, Jobs, ReplicaSets,
StatefulSets and DaemonSets as well as Pods and Services
provide the basic building blocks to assemble an application
architecture on Kubernetes.

Different controllers operate on each of the resources and run
specific control-loops. The controllers are fully independent
of each other. Addons enable Kubernetes to manage outside
resources. For example, the Cloud Controller is used to
manage load balancers of cloud providers such as AWS or
Azure. Other controllers can manage persistent storage and
attach storage to containers.

The simple but powerful combination of a standardized, yet
extensible and versioned API on one side with independently
acting controllers on the other side extends beyond the
Kubernetes core project. This concept of extensibility
has spawned a continuous wave of additional custom
functionality. The CNCF publishes an ever-growing landscape
of software and providers that integrate with Kubernetes.

The Kubernetes operator pattern is an example of the
extensibility of the Kubernetes API. Custom functionality
and custom resources can be added by simply creating an
API object that is described in a YAML file and a controller
that acts on behalf of the new API. The new resources are

submitted to the Kubernetes API using the standard kubectl
command line client or packaging tools such as Helm and
become available for usage.

The Kubernetes Operator Pattern

The core resources of Kubernetes, such as pods and services
cover the most common requirements for creating stateless
applications and can be extensively combined and configured
to form application architectures. Stateless applications
usually don’t require any special treatment in terms of
distributed storage or consensus to reach a healthy state.
For example, the pods of a stateless application can be easily
upgraded to a new version without having to consider storage
requirements or state.

For stateful applications, Kubernetes provides some limited
support in the form of StatefulSets. However, StatefulSets
do not address many of the specific needs for real stateful
and distributed applications such as databases, caches, or
queues.

In 2016, CoreOS introduced the operator pattern to address
the challenge of managing stateful applications on
Kubernetes with this blog post.

The basic Kubernetes building blocks.

Find more information here.

https://landscape.cncf.io
https://landscape.cncf.io
https://coreos.com/blog/introducing-operators.html
https://brennerm.github.io/posts/kubernetes-overview-diagrams.html%23workload

Best Practices for Operating HiveMQ and MQTT on Kubernetes

8

CoreOS proposed the creation of a custom API for a new
Kubernetes resource and a corresponding controller for
managing the resource. Since the Kubernetes API can be
extended, custom resource APIs can be easily added to
the API server. This new resource API is called the Custom
Resource Definition (CRD). CRDs are API objects and hold
the fields and basic syntax restrictions defining the new
resource.

The custom controller, commonly known as an operator,
communicates with the API server to handle the new API’s
resource requests. The operator encapsulates the domain
knowledge needed to implement and manage a particular
kind of application and its specific workflows and lifecycles.
Similar to the way that a human administrator can be asked
to set up or scale a database instance, increase storage, or
create a backup, such tasks can be implemented with the
operator.

Since its introduction, the Kubernetes operator pattern has
been applied to hundreds of different applications with new
operators reporting for duty every week.

The HiveMQ Kubernetes Operator
The HiveMQ MQTT broker can run in many different
environments, ranging from on-premise bare metal servers
to virtual machines or compute instances on public cloud
providers. The HiveMQ broker can also run as a container and
HiveMQ provides readily built images for this use case.

Although environments vary, the tasks required to operate a
HiveMQ cluster remain similar:
• spawning multiple HiveMQ nodes for high availability
• setting up service discovery to form a cluster
• configuring a load balancer to distribute incoming client

connections

Depending on the infrastructure, specific steps and
procedures are needed to install HiveMQ. For example, this
blog post explains the installation on AmazonWebServices
(AWS). Other approaches to install HiveMQ use tools such
as Terraform and are explained in this blog post. Regardless
of which infrastructure is used, all target platforms require
customized code and tools. The customized code prevents
easy reusability and portability of infrastructure code
between platforms.

By contrast, Kubernetes as a container platform provides
an abstraction layer that unifies the installation on different
infrastructures. Kubernetes creates a common standardized
deployment platform across different environments and
providers. Developers and system administrators can
construct tooling and CI/CD pipelines in an agnostic way.
Naturally, Kubernetes also provides the environment and
functionality to install and run a HiveMQ cluster.

HiveMQ containers can be started as pods and placed
(scheduled) onto different worker nodes to evenly distribute
the MQTT workloads and handle individual pod failures
without service downtime. Kubernetes-internal DNS provides
service discovery and is used as cluster discovery for HiveMQ
pods. The result is a masterless HiveMQ cluster. If a Cloud
Controller is available, a service of type LoadBalancer can be
defined. The HiveMQ MQTT service is then reachable via the
defined external LoadBalancer from outside the Kubernetes
cluster.

HiveMQ introduced the HiveMQ Kubernetes Operator to
automate and simplify this process of installing and operating
HiveMQ MQTT clusters on Kubernetes.

https://www.hivemq.com/blog/running-hivemq-cluster-aws-auto-discovery
https://www.hivemq.com/blog/running-hivemq-cluster-aws-auto-discovery
https://www.hivemq.com/blog/setup-hivemq-with-concourse-pipeline

! www.hivemq.com

9

The HiveMQ Kubernetes Operator reconciles the HiveMQ cluster definition with the running HiveMQ cluster.

As the diagram illustrates, the HiveMQ Kubernetes Operator
only requires the configuration of a single resource, the
HiveMQCluster custom resource. The HiveMQCluster is a new
API object defined by a Custom Resource Definition (CRD)
that is registered with Kubernetes. Developers and system
administrators can now install and operate HiveMQ clusters
as one consistent Kubernetes API object by submitting a
single YAML file that describes how the HiveMQ cluster
should be configured. The HiveMQ Kubernetes Operator
ensures that the desired state of the cluster is installed on

Kubernetes and regularly checks that the running HiveMQ
cluster matches the desired state.

The YAML file defines relevant configuration options such
as the number of nodes desired for the cluster or the version
of HiveMQ that is installed. The defined configuration
is analyzed and transformed by the HiveMQ Kubernetes
Operator into the required resources that are provided by
the Kubernetes ecosystem, such as Deployments, Services,
ConfigMaps, and others.

The HiveMQ cluster and the HiveMQ Kubernetes Operator integrate seamlessly into the Kubernetes ecosystem

Best Practices for Operating HiveMQ and MQTT on Kubernetes

10

The HiveMQ Kubernetes Operator can also connect a HiveMQ
cluster with other Kubernetes resources. In Kubernetes
environments, the popular Prometheus and Grafana
monitoring applications are often used to collect and
visualize application metrics. HiveMQ integrates seamlessly
with this monitoring stack and provides its metrics in
the corresponding format via the HiveMQ Prometheus-
Extension. The HiveMQ Operator creates the configuration to
automatically monitor the HiveMQ cluster with Prometheus
and Grafana. Monitoring dashboards for Grafana are
included.

In some use cases, it makes sense to include other external
systems and resources. For example, HashiCorp Vault to
manage secrets for TLS certificates, CertManager to manage
certificate creation, or External-DNS to manage DNS records
in external DNS systems such as AWS Route53.

The HiveMQ Kubernetes Operator can handle much more than
transforming a list of variables into a running HiveMQ cluster.
Just like a knowledgeable and experienced human operator,
the HiveMQ Kubernetes Operator verifies the desired HiveMQ
cluster resource definition for consistency and accuracy. The
HiveMQ operator verifies that all definitions and changes are
correctly applied to the HiveMQ cluster. If a configuration
could cause issues, the operator actively rejects the change
and provides a response with an explanation.

Take a look at our Quick Start guide to get a better
understanding of the HiveMQ Kubernetes Operator and to try
it out. Helm charts are provided as well that make it easy to
try out a HiveMQ cluster in your Kubernetes environment.

HiveMQ and Kubernetes best
practices

Storage Considerations for HiveMQ
MQTT is a real-time IoT protocol. In general, MQTT brokers
deliver messages to subscribed clients immediately.
However, to guarantee the delivery of QoS 1 and 2 messages,
storage must be part of the workflow. For example, the
broker may need to store messages for subscribers that are
temporarily disconnected. IoT solutions that utilize MQTT
retained messages require storage as well. As a distributed
system, HiveMQ replicates queued data among its cluster
nodes. The replication ensures that the loss of a single
HiveMQ node cannot cause any data loss. The replication
factor can be configured and needs to be taken into account
when configuring storage.

The HiveMQ cluster nodes that the HiveMQ Kubernetes
Operator deploys and manages are configured with an
ephemeral storage volume that holds 15 GB of data by
default. For production scenarios, HiveMQ requires a
minimum of 100 GB of storage. The storage configuration
can be easily adjusted. In all cases, Kubernetes worker
nodes must be configured with enough local storage to
accommodate the amounts requested by the HiveMQ pods.
It is good practice to monitor storage usage such as IOPS
and throughput. Monitoring and adequate configuration
ensure that storage does not become a bottleneck for the
performance of the HiveMQ broker.

Find more details on message storage in this inovex blog
post.

https://github.com/prometheus-operator/prometheus-operator
https://github.com/hivemq/hivemq-prometheus-extension
https://github.com/hivemq/hivemq-prometheus-extension
https://www.vaultproject.io/
https://github.com/jetstack/cert-manager
https://github.com/kubernetes-sigs/external-dns
https://www.hivemq.com/docs/operator/latest/kubernetes-operator/operator-intro.html%23quick-start
https://www.hivemq.com/docs/operator/latest/kubernetes-operator/configuration.html%23limits
https://www.inovex.de/blog/kubernetes-storage-volume-cloning-ephemeral-inline-volumes-snapshots/
https://www.inovex.de/blog/kubernetes-storage-volume-cloning-ephemeral-inline-volumes-snapshots/

! www.hivemq.com

11

Networking Aspects in Kubernetes
There are two networking aspects to consider in Kubernetes:

• North/South traffic: This networking aspect represents
network requests that are routed into the cluster from
external systems and are served by application containers
running in pods.

• East/West traffic: This networking aspect represents
network requests that are routed inside the cluster between
pods, services, and other Kubernetes resources.

Kubernetes treats MQTT traffic as a plain TCP service with
no application-layer proxy in front of the broker. MQTT clients
usually maintain long-lasting connections to the MQTT
broker. For efficiency reasons, clients tend to avoid frequent
connects/reconnects. This behavior results in thousands or
even millions of clients holding persistent TCP connections to
the MQTT broker and therefore also to Kubernetes.

Most of the networking inside the Kubernetes cluster is
handled by plugins that are compatible with the Kubernetes
container networking interface. Depending on the Kubernetes
environment and user requirements, these CNI plugins
cover different aspects of networking. For example, packet
filtering or the encryption of internal traffic. There can be
different reasons to select a specific CNI plugin. Project
Calico and Cilium are two popular choices, but numerous
other options are available. Kubernetes as a Service (KaaS)
providers frequently offer a default CNI implementation
that utilizes their existing virtual networking as well as
custom configuration options. You can learn more about the
essentials of Kubernetes networking in this blog post.

In addition to the CNI plugins, kube-proxy is a Kubernetes
component that runs on each node to manage iptables or ipvs
rules. Kube-proxy manages access to individual pods through
defined services. Some CNI plugins also use iptables to
apply additional packet filtering to the network traffic inside
the Kubernetes cluster. Each connection is inserted into the
conntrack tables of the Linux Kernel. A high number of TCP
connections or a high churn rate places significant stress on
this stack. Depending on your particular connection scenario
and the available memory and CPU, some configuration
adjustments may be necessary. Kube-proxy options are
available here.

It is important to monitor the metrics and limits over time.
The Node-Exporter from Prometheus provides the required
metrics and additional insights into the tcpstat subsystem of
the kernel.

If the iptables / conntrack stack is no longer able to scale to
the required number of connections, consider using Cilium
CNI. Cilium uses eBFP for packet forwarding and can replace
kube-proxy.

Load Balancing Client Connections
Usually an external load balancer handles incoming TCP
connections (north/south traffic) to applications deployed
on Kubernetes. Public cloud offerings typically provide load
balancing as a managed service. For on-premise Kubernetes
clusters, the load balancer can also be a physical appliance.

For each service of type LoadBalancer Kubernetes opens
a common NodePort on each of its worker nodes. Each
node is then configured as a backend for the external load
balancer. The load balancer, however, has no knowledge of
the application pod placement on Kubernetes nodes, and
therefore attempts to forward TCP connections to all nodes
equally.

With the externalTrafficPolicy setting of a service, the
distribution of TCP connections to Kubernetes nodes can be
influenced. The default setting for the externalTrafficPolicy
is Cluster. External connections are forwarded from the load
balancer to any Kubernetes node and from there to a Pod
belonging to the relevant application service. The pod that
finally receives the connection can be on the local node or
any other node within the cluster.

Example with externalTrafficPolicy set to cluster.

https://www.projectcalico.org/
https://www.projectcalico.org/
https://cilium.io
https://www.inovex.de/blog/kubernetes-networking-part-1-en/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy
https://www.robustperception.io/conntrack-metrics-from-the-node-exporter
https://docs.cilium.io/en/v1.9/gettingstarted/kubeproxy-free/

Best Practices for Operating HiveMQ and MQTT on Kubernetes

12

Therefore the incoming (north/south) connection often has
to be routed via an additional, cluster-internal (east/west)
connection even though a suitable HiveMQ pod is available
locally. This extra forwarding decision ensures close to equal
distribution among all pods of a service, but the additional
(east/west) connection has to be managed at the kernel level
and uses additional resources.

Setting the externalTrafficPolicy to Local, directs network
traffic only to a node‘s local pods. While this approach
seems more efficient at first glance, two issues need to be
considered.

First, as visualized in the graphic above, when the node that
receives the connection lacks a locally running HiveMQ
pod, the connection fails. To avoid connection failure, the
load balancer must only forward connections to nodes that
have suitable and healthy pods. To achieve this distribution,

the load balancer must be configured with a health check
that only reports K8s nodes with HiveMQ pods. In most
environments, no manual action is required, the cloud
controller also manages the health-check configuration of the
external load balancers.

Secondly, if the HiveMQ pods are unevenly distributed across
Kubernetes nodes, the pods can receive uneven traffic loads.
Since the load balancer does not know how many pods of
each service run on each node, the load balancer sends an
equal number of connections to every available node. As a
result, HiveMQ pods can receive an uneven number of TCP
connections.

The HiveMQ Kubernetes Operator automatically sets affinity
rules to avoid such a scenario. These affinity or anti-affinity
rules prompt Kubernetes to spread HiveMQ pods evenly

Example with externalTrafficPolicy set to local and
a node without a HiveMQ pod causing traffic to be blackholed.

Example with externalTrafficPolicy set to cluster and
an uneven pod distribution.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/%23affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/%23affinity-and-anti-affinity

! www.hivemq.com

13

across worker nodes and avoid co-locating HiveMQ pods.
This distribution requires that enough physical nodes are
available so that each HiveMQ pod can be placed onto a
unique worker node. The default affinity rules will also try
to avoid co-locating pods from other HiveMQ clusters on
the same worker nodes if possible. The affinity rules can be
configured via the HiveMQ Operator Helm chart.

The externalTrafficPolicy and other settings can be
configured to your particular requirements via the port-patch
configuration section of the HiveMQ Kubernetes Operator.
The HiveMQ documentation contains more details.

TCP Keepalive for MQTT
MQTT has its own KEEPALIVE mechanism. The interval for
this mechanism must align with the TCP idle timeout settings
of the infrastructure that is used. Check the settings for your
AWS Network Load Balancer (NLB), Azure Load-Balancer or
any other load balancer used. For example, if the external
load balancer drops TCP connections after 350 seconds
of idle time, then the MQTT KEEPALIVE should be set
accordingly to a lower setting.
If the MQTT KEEPALIVE cannot be reconfigured to a lower
setting, then TCP keep-alives can be set on the Kubernetes
node to avoid a connection teardown. The following kernel
settings serve as an example:

 # cat /etc/sysctl.d/tcpkeepalive.conf

 net.ipv4.tcp_keepalive_time=300

 net.ipv4.tcp_keepalive_intvl=300

 net.ipv4.tcp_keepalive_probes=2

More information on setting sysctl configurations is available
here.

Kubernetes Custom Resource Definitions
Keep in mind that some resources in Kubernetes are
namespaced and others are not. To find out which API
resources are namespaced issue this command: kubectl

api-resources. The resulting list shows, for example, that
CustomResourceDefinitions are not namespaced:

“customresourcedefinitions crd,crds apiextensions.k8s.io
false CustomResourceDefinition”

The CustomResourceDefinition (CRD) for the HiveMQCluster
resource applies to all HiveMQ clusters that are running on
the selected Kubernetes environment.

The HiveMQ Kubernetes Operator is usually installed
via Helm using a preconfigured HiveMQ Helm Chart that
includes the installation of the CustomResourceDefinition
for the HiveMQCluster. If the CustomResourceDefinition is
deleted, Kubernetes automatically uninstalls all deployed
CustomResources that are associated with the deleted
CRD. If the CRD for the HiveMQCluster resource is removed,
Kubernetes will uninstall all HiveMQ clusters regardless of
their namespace.

Additional Resources

The HiveMQ broker comes with extensive documentation that
covers configuration options and many operational topics.

The HiveMQ Kubernetes Operator documentation shows how to

configure HiveMQ specifically for Kubernetes. A quick start guide is
included in the documentation to help with the Helm commands that
are needed for the installation.

Feel free to explore the installation of a HiveMQ cluster on a
Kubernetes environment of your choice (minimum Kubernetes
version 1.13 and Helm 3). Free trial licenses allow you to fully test
your cluster installation with a limited number of client connections.

As always, if you have questions, don’t hesitate to contact inovex

or HiveMQ. We are happy to help.

• inovex blog https://www.inovex.de/blog/

• HiveMQ blog https://www.hivemq.com/blog

• HiveMQ documentation: https://www.hivemq.com/docs

https://www.hivemq.com/docs/operator/4.4/kubernetes-operator/configuration.html%23ports-patch
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/network-load-balancers.html%23connection-idle-timeout
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-tcp-reset%23configurable-tcp-idle-timeout
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/%23enabling-unsafe-sysctls
https://www.hivemq.com/docs/hivemq
https://www.hivemq.com/docs/operator
https://www.hivemq.com/docs/operator/latest/kubernetes-operator/operator-intro.html%23quick-start
https://www.inovex.de/en/about-us/contact-us/
https://www.hivemq.com/contact
https://www.inovex.de/blog/
https://www.hivemq.com/blog
https://www.hivemq.com/docs

Kubernetes is a flexible and rapidly

evolving ecosystem for operating

containerized applications. The

Kubernetes operator pattern and the

HiveMQ Kubernetes Operator offer

the advantage of running your MQTT

workloads on Kubernetes using the

experience and automation provided

by the HiveMQ team. Operations teams

benefit from increased productivity

and improved workflows through the

automation of complex distributed

systems tasks. In situations where

Kubernetes is already used for deploying

containerized applications, it makes sense

to add MQTT workloads to Kubernetes as

well. The standardization of deployments

and operations for Kubernetes makes it

easier to avoid vendor lock-in especially in

public cloud environments.

Summary and Outlook

Best Practices for Operating HiveMQ and MQTT on Kubernetes

14

HiveMQ GmbH
Ergoldingerstr. 2a
84030 Landshut
Germany

www.hivemq.com

inovex GmbH
Ludwig-Erhard-Allee 6
76131 Karlsruhe
Germany

www.inovex.com

© HiveMQ GmbH 2021

https://www.hivemq.com
https://www.inovex.com

