Praxisnahe Erfahrungen aus dem Datenqualitäts-Dschungel

Florian Gräbe, Marcel Spitzer

Team inovex

Karlsruhe · Köln · München · Hamburg Berlin · Stuttgart · Pforzheim · Erlangen

Marcel Spitzer

Marcel Spitzer

Florian Gräbe

Florian Gräbe

Data & ML Engineer (2016)

"Struggles his way through the data wilderness"

Data & ML Engineer (2022)

"Driven by good Data, ML and Dancing"

Wir freuen uns auf Ihren Besuch an **Stand 2** im Foyer!

WE ARE INOVEX – INNOVATE, INTEGRATE, EXCEED.

Ihr Partner für die digitale Transformation mit dem Leistungsspektrum

Data & AI
Application Development
Skalierbare IT-Infrastrukturen
Training & Coaching

Ausschließlich festangestellte Mitarbeitende

Wachstum durch Innovationen und erfolgreiche Projekte

SOFTWARE · DATA & AI · INFRASTRUCTURE

Begeben wir uns in die Wildnis

- 1. Sind wir im Daten-Dschungel?
- 2. Risiken und Gefahren
- 3. Sicheres Fortbewegen
- 4. Survival Ausrüstung

Undurchsichtig

Verwachsen

Unterschiedliche Blickwinkel

Chaotisch / Wild

Verwachsen

Undurchsichtig

Welche Regeln und Gesetze gelten (GDPR, ...)?

Woher kommen die Daten?

Unterschiedliche Blickwinkel

Chaotisch / Wild

Wozu sind die Daten nutzbar?

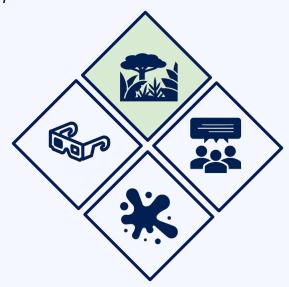
Kann ich den Daten vertrauen?

Undurchsichtig

Welche Regeln und Gesetze gelten (GDPR, ...)?

Woher kommen die Daten?

Verwachsen



Unterschiedliche Blickwinkel

Chaotisch / Wild

Wozu sind die Daten nutzbar?

Kann ich den Daten vertrauen?

Undurchsichtig

Welche Regeln und Gesetze gelten (GDPR, ...)?

Woher kommen die Daten?

Verwachsen

Chaotisch / Wild

Wie kann ich auf die Daten zugreifen?

Wer besitzt welche Daten?

Unterschiedliche Blickwinkel

Wozu sind die Daten nutzbar?

Kann ich den Daten vertrauen?

Undurchsichtig

Welche Regeln und Gesetze gelten (GDPR, ...)?

Woher kommen die Daten?

Verwachsen

Chaotisch / Wild

Wie kann ich auf die Daten zugreifen?

Wer besitzt welche Daten?

Unterschiedliche Blickwinkel

In welcher Qualität und Formaten liegen die Daten vor?

Was verstehen wir unter Datenqualität?

- Allgemein: der Grad der Übereinstimmung von Daten mit der Realität
- in der Praxis jedoch oft schwierig bis unmöglich auf diese Weise zu messen
- Deshalb: Abweichung von zuvor festgelegten Annahmen
- Annahmen ergeben sich aus der jeweiligen Domäne, deshalb regelmäßiger Austausch mit Experten erforderlich

Gefahren im Daten-Dschungel

- Auf Basis von fehlerhaften Daten können falsche Schlussfolgerungen gezogen und suboptimale Entscheidungen getroffen werden
- Die Qualität eines AI- oder ML-Modells hängt maßgeblich von den Trainingsdaten ab (Garbage-in-Garbage-out)
- Beispielszenarien, in denen fehlerhafte Daten großen Schaden anrichten können:
 - o Empfehlungssysteme
 - Absatzprognose
 - Investitionsentscheidungen

Mit Plan sicher durch den Daten-Dschungel bewegen

- Kooperatives Erarbeiten von Annahmen
- 2. Definition von **Strategien** für den Umgang mit Auffälligkeiten und Fehlern
- 3. **Integration** von Datenvalidierung in Datenpipelines
- 4. **Überwachen** der Validierungsergebnisse und aktualisieren der Annahmen

Herausforderung: Anforderung sammeln & konsolidieren

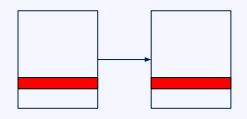
Datenqualität umfasst viele Dimensionen

Datentypen Regex Pattern Vollständigkeit **Nullability** Schwellenwerte syntaktische semantische Korrektheit Korrektheit Dates/ Wertebereiche Timestamps Korrelationen Stakeholder **Aktualität** Relevanz Bedeutung

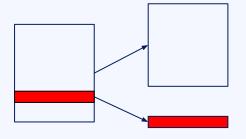
Kritikalität bestimmt den Umgang mit fehlerhaften Daten

- Je nach **Datensatz** und **Annahme** sind unterschiedliche Reaktionen erforderlich
- Unabhängig von der Reaktion sind
 Benachrichtigungen in jedem Falle sinnvoll
- Wurden fehlerhafte Daten identifiziert gibt es verschiedene Möglichkeiten, darauf zu reagieren:

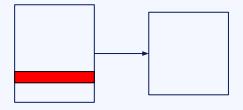
Kritikalität bestimmt den Umgang mit fehlerhaften Daten



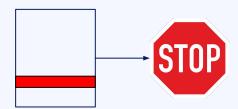
(a) weiterverarbeiten



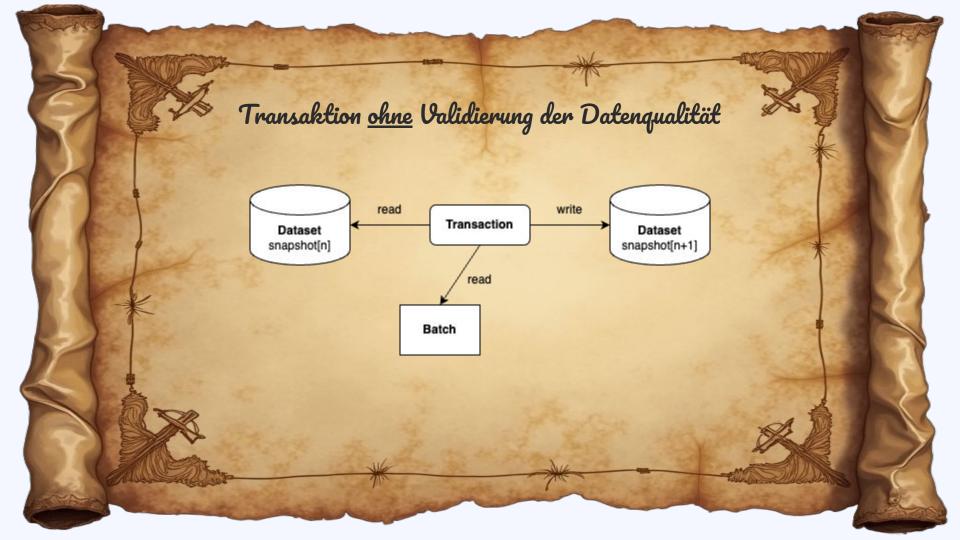
(c) aussortieren

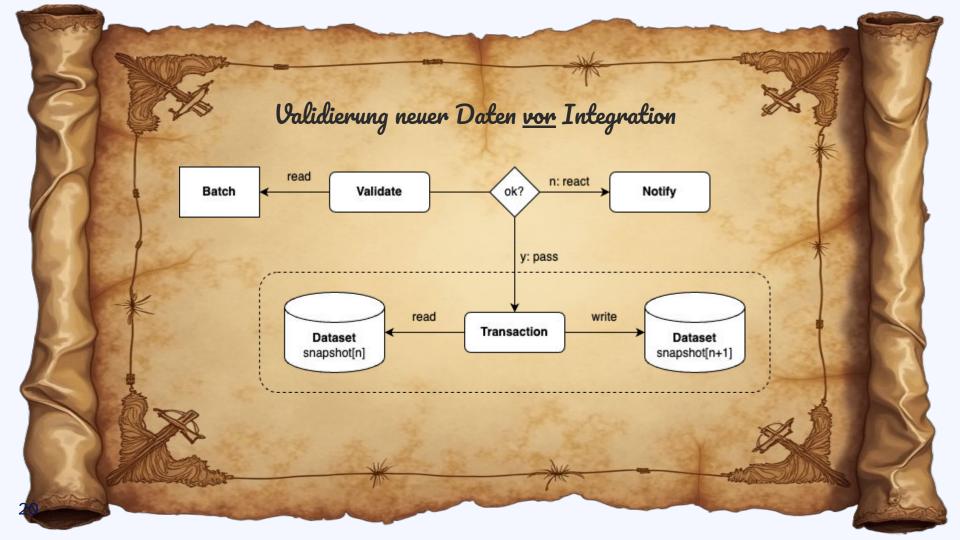


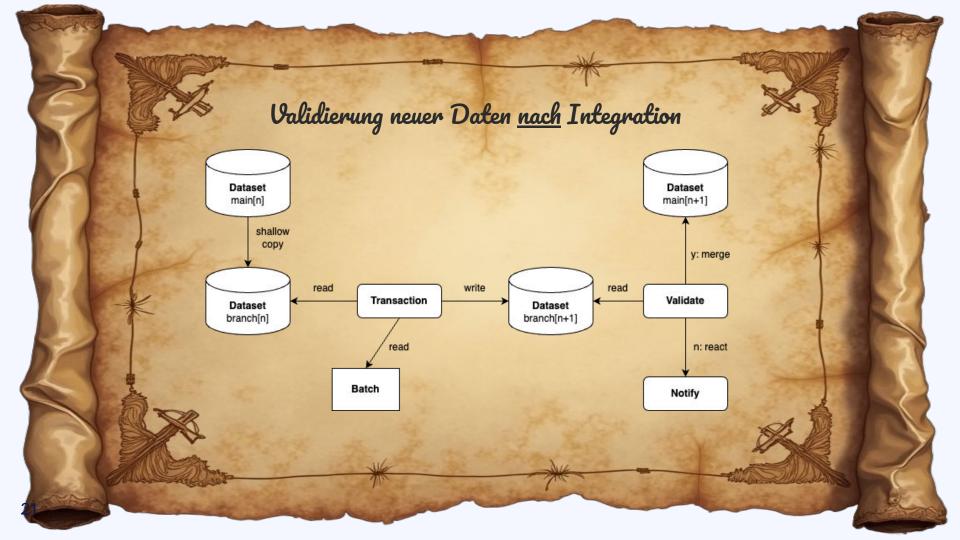
(b) ignorieren



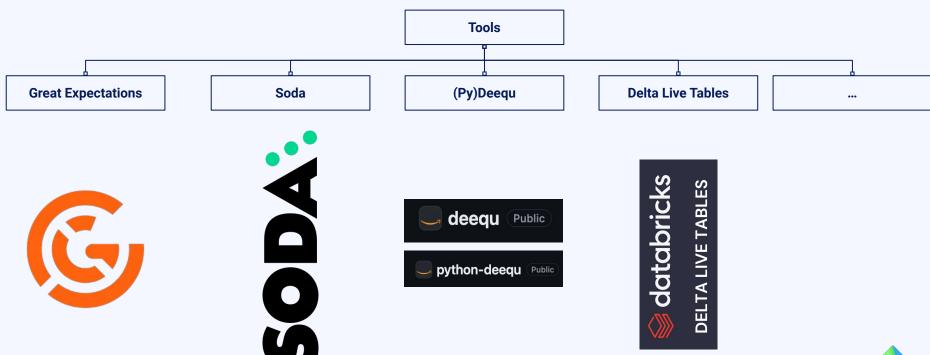
(d) stoppen







Ein breites Angebot an Werkzeugen



Great Expectations: Die etablierte Toolbox für den Ernstfall

"Great Expectations is the leading tool for validating, documenting, and profiling your data to maintain quality and improve communication between teams"

- "Eierlegende Wollmilchsau" im Datenqualitäts-Dschungel
- Breites Einsatzspektrum, aber steile Lernkurve
- Umfangreiches Set an **Expectation Optionen**
- Große Community und Verbreitung

Great Expectations: Context Setup

```
Data Context
              Data Source
                           expectation.json
                                             Checkpoint
                                                             Data Docs
from great_expectations.data_context import EphemeralDataContext,
FileDataContext
# Fluechtiger in Memory Context
context = EphemeralDataContext(project_config=project_config)
# Context mit Filesystem Backend
path_to_folder = "./"
context = FileDataContext.create(project_root_dir=path_to_folder)
```


Great Expectations: Datenquellen

```
Data Context
               Data Source
                             expectation.json
                                                Checkpoint
                                                                 Data Docs
# Nutzen einer Postgres als Datenquelle
pg datasource = context.sources.add postgres(
    name="pg datasource", connection string=PG CONNECTION STRING
# Nutzen einer Datei in S3 als Datenquelle
data source = context.sources.add pandas s3(
   name=source name, bucket=bucket name
data asset = data source.add csv asset(
   name=asset_name, batching_regex=batching_regex, s3_prefix=s3_prefix
data asset.build batch request()
```

< 0.18.x

Great Expectations: Expectation Suite

```
Data Context
               Data Source
                             expectation.json
                                                 Checkpoint
                                                                   Data Docs
 "expectation_suite_name": "d2d_expectations",
 "ge_cloud_id": null,
 "expectations": [
 "expectation_type": "expect_column_values_to_be_between",
 "kwargs": {
   "column": "listener_count",
   "max_value": 1000000,
   "min_value": 1,
 "meta": {}
},
```

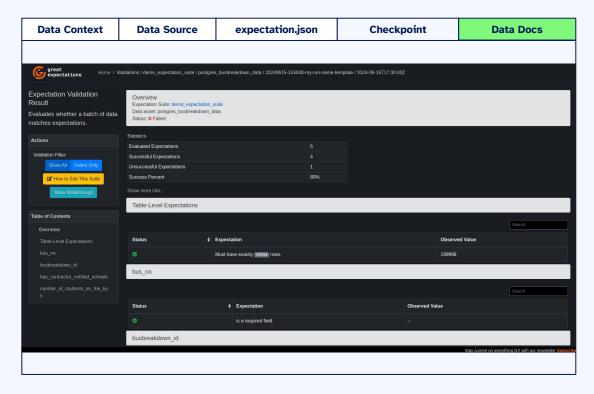

<0.18.x

Great Expectations: Checkpoint

```
Data Context
               Data Source
                             expectation.json
                                                 Checkpoint
                                                                  Data Docs
validations = [
       "batch_request": batch_request,
       "expectation_suite_name": expectation_suite,
       "action_list": action_list,
checkpoint = context.add_or_update_checkpoint(
   name="Checkpoint",
   validations=validations,
   runtime_configuration={}},
checkpoint.run(run name=run name)
```


<0.18.x

Data Docs: Ergebnisse als HTML

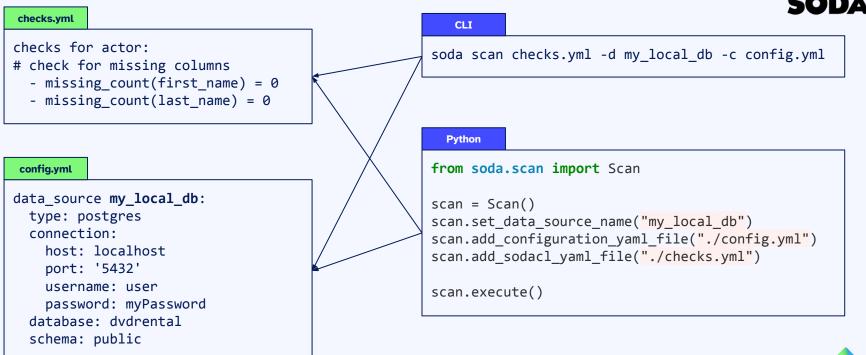


Der Challenger im DQ Dickicht

"Build reliable data products and pipelines with Soda, the GenAI-first platform for data quality. Embed tests into your workflows and monitor data quality health any way you like-through out-of-the-box observability or declarative testing."

- Breites Angebot an Checks und Datenquellen
- Möglichkeit zur Erstellung individueller Checks
- **Intuitives** Nutzungskonzept
- aktuell weniger verbreitet

Datasets und Checks werden in Soda in YAML definiert



Datasets und Checks werden in Soda in YAML definiert


```
CLI
soda scan checks.yml -d my_local_db -c config.yml
              Scan summary:
              2/2 checks PASSED:
                  actor in my_local_db
                    missing_count(last_name) = 0 [PASSED]
                    missing_count(first_name) = 0 [PASSED]
              All is good. No failures. No warnings. No errors.
```


Soda ist ein starker Konkurrent zum etablierten GX

	SODA:	Great Expectations
Integrationsmöglichkeiten	+	+
Funktionsumfang	+	+
Nutzungskonzept	+	-
Dokumentation	+	-
Verbreitung/Community	-	+

Fazit: Überleben im Daten-Dschungel

Risiken und Gefahren kennen:

- Konsequenzen fehlerhafter Daten
- Vorsorge ist besser als Nachsorge

Verbündete mit einbeziehen:

Domänenexperten, Nutzer, Stakeholder, ...

Stets den Kompass im Blick behalten:

 Iterative Herangehensweise, inkrementelle Verbesserung

Geschulter Umgang mit Werkzeugen:

- Integrierte Datenvalidierung
- Strategien f
 ür den Umgang mit Auff
 älligkeiten

Vielen Dank!

Marcel Spitzer Data & ML Engineer

marcel.spitzer@inovex.de

Florian Gräbe **Data & ML Engineer**

florian.graebe@inovex.de

Vortragsfolien zum Download

Besuchen Sie uns gerne auch an unserem Stand im Foyer!

