
Hello,

www.inovex.de

Modern Android app
development with Kotlin

Index

+49 721 619 021-0 inovex.dejohannes.schamburger@inovex.de

Johannes Schamburger
Android Developer

Your Trainer

1. Kotlin language features

2. Tools

3. Jetpack Compose

4. App Architecture

5. Dependency Injection

6. Concurrency

7. Network

8. Local Storage

9. Databases

10. Modularization

11. Performance Testing

12. UI Testing

13. Continuous Integration

14. Android Automotive

my name is Johannes and this is the course that I usually give in 4 days. Using this document, will you be able to

learn the content by yourself? If not, let us know and we’ll arrange a guided training for you.

This training introduces participants to the programming language Kotlin and its use in modern Android app develop-

ment. During the exercises accompanying the training, participants are building a small application enabling a user to

search GitHub projects. Throughout the modules, the app is built from the ground up adding the functionality step by

step.

This PDF is interactive – click on the links to navigate through the document and discover supplementary information

from diverse resources.

https://www.inovex.de/de/
https://www.inovex.de/de/
https://www.inovex.de/de/leistungen/data-science/zeitreihenanalyse-und-vorhersagemodelle/
https://www.inovex.de/
mailto:johannes.schamburger@inovex.de
https://twitter.com/inovexgmbh?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.instagram.com/inovexlife/?hl=en
https://www.linkedin.com/company/inovex/

3

Arrow-right

Kotlin language features
Kotlin is a statically typed, multi-paradigm programming language which is interoperable with Java.

Since 2019, it is the first choice for building Android applications with official support from Google

Content
• Kotlin syntax

• important Kotlin features including nullability, mutability, data / sealed classes,

 extension functions and higher order functions

Exercises
The Kotlin language concepts are illustrated via live coding and rehearsed in a quiz.

Resources

Arrow-right Official documentation

Arrow-right Kotlin Playground

Arrow-right Kotlin Koans

Arrow-right API reference

Arrow-right Kotlin Cheat Sheet

Tools
This module shows the basic usage of the tools necessary to create and build an Android application

and gives an overview over the source code of an app.

Content
• Android Studio

 • Logcat

 • App Inspection

 • Layout Inspector

• Android Emulator

• Android project structure

 • AndroidManifest

 • Activities

• Gradle

Resources

Arrow-right Android Studio documentation

Arrow-right Official Android documentation

Arrow-right API reference

Module 1

Module 2

https://kotlinlang.org/
https://play.kotlinlang.org/
https://play.kotlinlang.org/koans/overview
https://play.kotlinlang.org/koans/overview
https://kotlinlang.org/api/latest/jvm/stdlib/
https://kt.academy/Kotlin_Cheat_Sheet.pdf
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/
https://developer.android.com/reference/packages

4

Arrow-right

UI with Jetpack Compose
For several years, Android app layouts were created using XML layout files in combination with tech-

nologies like data binding to modify the UI in the Java or Kotlin code. Jetpack Compose is a newer

technology and the recommended toolkit for building native Android UI. It offers a declarative API

to define layouts completely in Kotlin. This segment of the training shows how to create Compose

layouts and how to make them interactive.

Content
• Composables

• Compose Layouts

• State handling in Compose

• Modifiers

Exercises
Participants create the app’s UI showing a search bar and a list of GitHub projects in preparation for

the functionality which will be built in the following modules.

Resources

Arrow-right Compose documentation

Arrow-right Compose Essentials course

Arrow-right Compose Basics Codelab

App Architecture
To make an Android application maintainable in the long run, several architectural principles such as

Separation of concerns, single source of truth and Unidirectional Data Flow should be respected.

Content
• Layered Architecture

• Model View ViewModel (MVVM)

• Repository pattern

• Unit Testing + Mocking

Exercises
Participants implement the layered architecture for the application created in the previous exercise

to lay the foundation for adding functionality to the app. Also, the basics of unit testing (including

mocking) are practiced by test driven development (TDD).

Resources

Arrow-right Architecture Introduction

Arrow-right Recommendations

Arrow-right Modern Android App Architecture course

Module 3

Module 4

https://developer.android.com/jetpack/compose
https://developer.android.com/courses/pathways/jetpack-compose-for-android-developers-1
https://developer.android.com/codelabs/jetpack-compose-basics#0
https://developer.android.com/topic/architecture/intro
https://developer.android.com/topic/architecture/recommendations
https://developer.android.com/courses/pathways/android-architecture

5

Arrow-right

Dependency Injection
The bigger an app gets the more tedious it gets to manage objects used at several locations throug-

hout the app manually. Dependency Injection aims at separating the construction and sharing of

dependencies from the classes using them.

Content
• Dependency Injection frameworks: Koin, Dagger, Hilt

• Constructor injection and field injection

• Android specific challenges

Exercises
To practice usage of Dependency Injection, one or more of the introduced frameworks can be used

for the demo application based on the interests of the participants.

Resources

Arrow-right Dependency injection in Android

Arrow-right Koin

Arrow-right Dagger

Arrow-right Codelab

Arrow-right Hilt

Concurrency
Many functionalities within an Android application require concurrency. The main thread, which is

responsible for rendering the UI and processing user input, may not be blocked. Therefore, potential-

ly long-running operations like network requests, file/database I/O or complex computations need to

be performed on separate threads.

Content
• Coroutines

• Suspending functions

• Scopes

• Dispatchers

• Flows

Exercises
The exercises simulate an asynchronous way of searching GitHub projects and make the necessary

changes throughout the app. Also, they introduce a flow representing the UI state which will be ren-

dered by the UI components created in Module 3.

Resources
Coroutines

Arrow-right Kotlin Coroutines documentation

Arrow-right Coroutines on Android

Arrow-right Testing Coroutines

Flows

Arrow-right Kotlin Flows documentation

Arrow-right Flows on Android

Arrow-right Testing Flows on Android

Arrow-right Turbine

Module 5

Module 6

https://developer.android.com/training/dependency-injection
https://insert-koin.io/docs/setup/koin/
https://developer.android.com/training/dependency-injection/dagger-android
https://developer.android.com/codelabs/android-dagger
https://developer.android.com/training/dependency-injection/hilt-android
https://kotlinlang.org/docs/coroutines-overview.html
https://developer.android.com/kotlin/coroutines
https://developer.android.com/kotlin/coroutines/test
https://kotlinlang.org/docs/flow.html
https://developer.android.com/kotlin/flow
https://developer.android.com/kotlin/flow/test
https://github.com/cashapp/turbine

6

Arrow-right

Network
Many Android applications interact with data from backend resources. To retrieve and modify this

data, apps typically use HTTP requests.

Content
• Retrofit

• Moshi (JSON Parser)

Exercises
In the exercise for this module, participants add the functionality to search for projects using the Git-

Hub API (as opposed to displaying static data as it was before).

Resources

Arrow-right Retrofit

Arrow-right JSON Parsing library Moshi

Local Storage
Android applications typically need to persist data across application restarts in order to enable the

user to pick up where they left off. There are several ways depending on the nature of the data to be

saved. The easiest option is to save simple key-value pairs.

Content
• DataStore

Exercises

Participants save the user-entered search query and restore it upon app restart.

Resources

Arrow-right DataStore

Arrow-right Codelab DataStore

Databases
Storing data in the DataStore, as discussed in the previous module, is suitable for simple key-value

pairs, but not for more complex structured data. To enable storing data in databases, Android offers

APIs for SQLite databases. Developers can use these APIs directly or use a library like Room to

simplify database interactions.

Content
• Room

• Data Access Objects (DAOs)

• Database relations

Exercises
The example application is extended with a local cache of search results, thus avoiding unnecessary

network traffic and adding offline capabilities to the app.

Resources

Arrow-right Save data using SQLite

Arrow-right Room documentation

Arrow-right Codelab Room

Module 7

Module 8

Module 9

https://square.github.io/retrofit/
https://github.com/square/moshi
https://developer.android.com/topic/libraries/architecture/datastore
https://developer.android.com/codelabs/android-preferences-datastore#0
https://developer.android.com/training/data-storage/sqlite
https://developer.android.com/training/data-storage/room
https://developer.android.com/codelabs/android-room-with-a-view-kotlin#0

7

Arrow-right

Modularization
As applications are getting bigger and more complex, developers may think about splitting the

source code up into several modules. This can have multiple benefits like scalability, encapsulation

and testability but at the same time might introduce challenges such as making the codebase more

complex and creating boilerplate code.

Content
• principles for modularization

 • high cohesion

 • low coupling

 • reasonable granularity

• modularization patterns

• technical solutions for modularization in Android apps

• navigation in Android apps

• (optional) Kotlin Multiplatform Mobile (KMM)

Exercises
Participants extract modules from the app’s source code and optionally create a Kotlin Multiplatform

Module (KMM) which could potentially be shared between Android and iOS apps.

Resources

Arrow-right Official documentation

Kotlin Multiplatform Mobile (KMM)

Arrow-right Official documentation

Arrow-right Tutorial for a KMM app with Ktor and SQLDelight

Navigation in Android apps

Arrow-right Official documentation

Arrow-right Android navigation codelab

Arrow-right Navigation in Compose

Arrow-right Jetpack Compose Navigation codelab

Performance Testing
Performance issues are a relevant topic for every Android app, especially if it is running on a multitu-

de of devices. There are several ways of identifying and fixing performance issues, either by manual

or automated testing.

Content
• Manual Profiling

• Macrobenchmark and Microbenchmark

• Google Play Console

Exercise
Participants write a simple Macrobenchmark for the example application.

Resources

Arrow-right Guide to app performance

Arrow-right Android Studio profiler

Arrow-right Performance Debugging - MAD Skills video playlist

Module 10

Module 11

https://developer.android.com/topic/modularization
https://kotlinlang.org/lp/mobile/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html
https://developer.android.com/guide/navigation/navigation-principles
https://developer.android.com/codelabs/android-navigation#0
https://developer.android.com/jetpack/compose/navigation
https://developer.android.com/codelabs/jetpack-compose-navigation#0
https://developer.android.com/topic/performance
https://developer.android.com/studio/profile/android-profiler
https://www.youtube.com/playlist?list=PLWz5rJ2EKKc-xjSI-rWn9SViXivBhQUnp

8

Arrow-right

UI Testing
Writing tests to ensure the app handles user interactions correctly should be a good

practice for every Android application. In contrast to unit tests of components, UI tests

actually start the app under test on a device or an emulator and perform actions and

assertions on the app.

Content
• UI testing of Compose layouts

• Snapshot testing

Exercises
Participants learn to write UI tests for the app’s main screen including reactions on user

input events and create simple snapshot tests using the library Paparazzi.

Resources

Arrow-right Android UI Testing

Arrow-right Compose UI Testing

Arrow-right Testing Cheatsheet

Arrow-right Codelab Compose UI Testing

Arrow-right Snapshot testing library Paparazzi

Continuous Integration
There are many options to automatically build, test and deploy an app on a Continuous

Integration (CI) platform. This module will take an exemplary look at Gitlab CI.

Content
• typical setup of CI for Android apps

Exercise
Participants extend the CI configuration with a new job and execute it in Gitlab.

Resources

Arrow-right Get started with Gitlab CI/CD

Module 12

Module 13

https://developer.android.com/training/testing/instrumented-tests/ui-tests
https://developer.android.com/jetpack/compose/testing
https://developer.android.com/jetpack/compose/testing-cheatsheet
https://developer.android.com/codelabs/jetpack-compose-testing#0
https://github.com/cashapp/paparazzi
https://docs.gitlab.com/ee/ci/

9

Arrow-right

Module 14 Android Automotive
The Android Automotive Operating System (AAOS) is an infotainment platform running on a

car’s head unit. There are several differences when designing and implementing applications

running in the car compared to phone or tablet apps. Regarding the UI/UX, it is especially

important to present information in a way that minimizes distraction of the driver. Also, alter-

native input methods like voice control are more relevant than for phone apps.

In terms of functionality, automotive apps can access various signals from the car like the

current gear or the battery level.

Content
• Overview over AAOS

• Android Automotive emulator features

Resources

Arrow-right Developer documentation

Arrow-right Design documentation

Arrow-right Test using the AAOS emulator

Arrow-right Introductory video from Android Dev Summit

Modul 14

https://developer.android.com/training/cars
https://developers.google.com/cars/design/automotive-os
https://developer.android.com/training/cars/testing/emulator
https://www.youtube.com/watch?v=ELeNmFrm4vM

