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Interpretation 
is the process of 
giving explanations 
to humans.
~ B. Kim, Google Brain, Interpretable 
Machine Learning (ICML 2017)

https://people.csail.mit.edu/beenkim/papers/BeenK_FinaleDV_ICML2017_tutorial.pdf
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“Interpretability is the degree to which an observer 
can understand the cause of a decision.”
~ Miller T., 2017, Explanation in AI: Insights from the Social Sciences

● humans create decision systems 
● humans are affected by decisions
● humans demand for explanations

https://arxiv.org/pdf/1706.07269.pdf
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Bias towards Accuracy 

Do also consider asking yourself: 

● Am I solving the right problem?  
● How to make people trust my algorithm?
● Is there any bias? Are the training data representative?
● What is the impact in a real-world setting? 

https://bentoml.com/posts/2019-04-19-one-model/

“The machine learning community focuses too much on predictive performance. 
But machine learning models are always a small part of a complex system.” 
~ C. Molnar, 2019, One Model to Rule Them All



6https://arxiv.org/abs/1602.04938
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The additional need for interpretability
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The additional need for interpretability

The decision process of a model 
should be consistent to the 
domain knowledge of an expert.

In particular, it ...

● should not encode bias
● should not pick up random correlation
● should not use leaked information 

hard to capture in a 
single quantity
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Use models that are intrinsically interpretable and 
known to be easy for humans to understand.

Train a black box model and apply post-hoc 
interpretability techniques to provide explanations.

1

2
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Linear Regression

Linearity makes model easy to interpret

● learned weights can be used to explain feature effects
● predictions can be decomposed into individual attributions 
● confidence intervals express uncertainty 



Linear Regression: Model Internals

https://christophm.github.io/interpretable-ml-book/limo.html

● Coefficients indicate direction 
of influence 

● Confidence intervals express 
significance and uncertainty 

● Not comparable across 
features unless standardized



Linear Regression: Feature Effects

https://christophm.github.io/interpretable-ml-book/limo.html

● Decompose predictions into 
individual feature attributions

● Scale-independent, hence 
comparable across features

● Enables us to draw conclusions 
about feature importance 



https://christophm.github.io/interpretable-ml-book/limo.html

Linear Regression: Feature Effects

● Decompose predictions into 
individual feature attributions

● Scale-independent, hence 
comparable across features

● Enables us to draw conclusions 
about feature importance  

● Individual effects comparable  
to overall distribution 



14

Decision Trees

Intuitive decision process makes model easy to interpret

● captures nonlinear dependencies and interactions
● model is simple and self-describing
● rule-based prediction feels natural for humans
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Decision Trees: Model Internals

income > X? 

dept < Y? 

YESNO

NO

has larger 
impact than 

dept

● Tree structure lets us assess  
feature importance



16

Decision Trees: Model Internals

income > X? 

dept < Y? 

YESNO

NO

● Tree structure lets us assess  
feature importance

● Feature interactions can be 
determined by following paths 
from root to leaf
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Decision Trees: Individual Explanations

income > X? 

dept < Y? 

YESNO

NO

● Tree structure lets us assess  
feature importance

● Feature interactions can be 
determined by following paths 
from root to leaf

● To explain a particular 
prediction, just take a look at 
the path from root to leaf
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Wrap Up: Desirable Properties 

Intrinsically interpretable models simplify answering:   

● Which features are relevant? 
● How do they influence predictions? 
● How do features interact? 
● How certain is a prediction? 

Both for the entire model as well as individual predictions
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Wrap Up: Desirable Properties 

Intrinsically interpretable models simplify answering:   

● Which features are relevant? 
● How do they influence predictions? 
● How do features interact? 
● How certain is a prediction? 

Both for the entire model as well as individual predictions

How to answer these questions 

if models were black boxes?
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Use models that are intrinsically interpretable and 
known to be easy for humans to understand.

Train a black box model and apply post-hoc 
interpretability techniques to provide explanations.

1

2
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Feature Shuffling

https://amunategui.github.io/variable-importance-shuffler/

Train Model Apply

Shuffle

Evaluate

Training

Testing Shuffled

Scored

RMSE’=4.8

Evaluate

Scored

RMSE=3.2

X

X’

For every Feature X:
    Repeat this process N times 

X’ 
= Perm(X)

Degradation(RMSE,X) = 4.8 - 3.2 = 1.6
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Feature Shuffling

https://christophm.github.io/interpretable-ml-book/feature-importance.html  https://scikit-plot.readthedocs.io/en/stable/estimators.html#scikitplot.estimators.plot_feature_importances

● Estimates Feature importance 
by averaging degradation

● Tied to certain loss function

● Not applicable in high 
dimensional domains
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Individual Conditional Expectation (ICE)

https://christophm.github.io/interpretable-ml-book/pdp.html

Train Model

Training

Testing

Overwrite

Modified

X

Apply

Scored

X’

X’ = Const

XFor every Feature X: 
    Repeat this process using some constants CX

ŷ
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Individual Conditional Expectation (ICE)

https://christophm.github.io/interpretable-ml-book/pdp.html
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Individual Conditional Expectation (ICE)

https://christophm.github.io/interpretable-ml-book/pdp.html
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Individual Conditional Expectation (ICE)

https://christophm.github.io/interpretable-ml-book/pdp.html
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Global Surrogate Models 

https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning



● Feeds original model with small 
variations of instance to be explained

● Sampled instances are weighted by 
proximity to the instance of interest

● Interpretable models are fit locally 
on observed outcome  
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Local Surrogate Models (LIME)

https://christophm.github.io/interpretable-ml-book/lime.html
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Local Surrogate Models (LIME)

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
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Conclusion

● performance metrics are crucial for evaluation, 
but they lack explanations

● criteria like fairness and consistency are much 
harder if not impossible to quantify

● the problem with blackboxes is the lack of trust 
caused by their opaque nature

● transparency is key to achieving trust and 
acceptance in the mainstream



31https://xkcd.com/1838/

Conclusion

don’t end up like this!



● Molnar C., 2018, Interpretable Machine Learning - A Guide for Making 
Black Box Models Explainable

● Gill N., Hall P., 2018, An Introduction to Machine Learning Interpretability
● Zhao Q., Hastie T., 2017, Causal Interpretations of Black-Box Models
● Kim B., Doshi-Velez F., 2017, Interpretable Machine Learning:  The fuss, the 
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Resources
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